搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用改进的特征基函数法和自适应交叉近似算法快速分析导体目标电磁散射特性

王仲根 孙玉发 王国华

引用本文:
Citation:

应用改进的特征基函数法和自适应交叉近似算法快速分析导体目标电磁散射特性

王仲根, 孙玉发, 王国华

Fast analyses of electromagnetic scattering characteristics from conducting targets using improved and the adaptive cross approximation algorithm

Wang Zhong-Gen, Sun Yu-Fa, Wang Guo-Hua
PDF
导出引用
  • 特征基函数的构造是特征基函数法的关键步骤之一, 传统方法在构造特征基函数时, 需要在每个子域设置足够多的入射波激励, 生成的特征基函数个数较多, 奇异值分解时间较长. 为了加快特征基函数的构造, 本文提出了一种改进的特征基函数法. 该方法充分考虑每个子域之间的耦合作用, 求出每个子域的次要特征基函数, 从而降低入射波激励的个数, 大大减少了特征基函数的个数; 并且结合自适应交叉近似算法加速阻抗矩阵元素的计算, 提高了次要特征基函数求解和缩减矩阵构建过程中的矩阵矢量相乘的速度. 数值结果证明了本文方法的精确性和高效性.
    Constructing characteristic basis functions (CBFs) is a key step of characteristic basis function method (CBFM). But it is required to set adequate plane wave excitations in each sub-block, which leads to the increased number of characteristic basis functions and the longer time consumed in singular value decomposition of traditional method. In order to accelerate the construction of CBFs, an improved CBFM is presented, which fully considers the mutual coupling effects among sub-blocks and then the secondary level characteristic basis function (SCBF) is obtained, therefore the number of plane wave excitations is reduced greatly, and so is the number of characteristic basis functions. The adaptive cross approximation algorithm is also used to accelerate the matrix-vector multiplication procedure of generating SCBF and constructing the reduced matrix. Numerical results demonstrate that the proposed method is accurate and efficient.
    • 基金项目: 国家自然科学基金(批准号: 61172020)、高等学校博士学科点专项科研基金(批准号: 20123401110006)、安徽大学研究生学术创新基金 (批准号: 10117700470)和安徽大学211工程基金(批准号: ZYGG201202)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61172020), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123401110006), the Academic Innovation Research for College Graduates of Anhui University, China (Grant No. 10117700470), and the Fund for 211 Project of Anhui University, China (Grant No. ZYGG201202).
    [1]

    Harrington R F 1993 Field Computation by Moment Methods (New York: IEEE)

    [2]

    Kang Y M, Xu J X, Xie Y 2005 Chin. Phys. B 14 1691

    [3]

    Wang A Q, Guo L X, Chai C 2011 Chin. Phys. B 20 050202

    [4]

    Cao X Y, Chen M S, Wu X L 2013 Chin. Phys. Lett. 30 028401

    [5]

    Wu H J, Jiang W K, Lu W B 2012 Acta Phys. Sin. 61 054301 (in Chinese) [吴海军, 蒋伟康, 鲁文波 2012 61 054301]

    [6]

    Wang X B, Liang Z C, Wu Z S 2012 Acta Phys. Sin. 61 124104 (in Chinese) [王晓冰, 梁子长, 吴振森 2012 61 124104]

    [7]

    Song J M, Lu C C, Chew W C 1997 IEEE Trans. Antenn. Propag. 45 1488

    [8]

    Li M M, Chen H, Chen R S 2010 Chin. J. Radio Sci. 25 127 (in Chinese) [李猛猛, 陈华, 陈如山 2010 电波科学学报 25 127]

    [9]

    Pan X M, Sheng X Q 2011 Chin. J. Radio Sci. 33 1690 (in Chinese) [潘小敏, 盛新庆 2011 电波科学学报 33 1690]

    [10]

    Ma J, Guo L X, Wang A Q 2009 Chin. Phys. B 18 3431

    [11]

    Nie X C, Yuan N, Li L W 2008 IEEE Trans. Antenn. Propag. 56 3526

    [12]

    Hu J, Wang X F, Nie Z P, Xiao Y H 2007 Chin. J. Radio Sci. 22 614 (in Chinese) [胡俊, 王晓峰, 聂在平, 肖运辉 2007 电波科学学报 22 614]

    [13]

    Chen X L, Gu C Q, Niu Z Y, Li Z 2012 IEEE Trans. Antenn. Propag. 60 1186

    [14]

    Prakash V V S, Mittra R 2003 Microw. Opt. Technol. Lett. 36 95

    [15]

    Sun Y F, Chan C H, Mittra R 2003 IEEE Antennas and Propagation Society International Symposium Columbus, June 22-27, 2003 p1068

    [16]

    Han G D, Gu C Q 2007 Microw. Opt. Technol. Lett. 49 2879

    [17]

    Lucente E, Monorchio A, Mittra R 2008 IEEE Trans. Antenn. Propag. 56 999

    [18]

    Delgado C, Mittra R 2008 IEEE Antenn. Wirel. Propag. Lett. 7 43

    [19]

    Hou Z G, Wang C, Dong C Z, Yin H C 2011 Syst. Engineer. Electron. 33 1458 (in Chinese) [侯兆国, 王超, 董纯柱, 殷红成 2011 系统工程与电子技术 33 1458]

    [20]

    Wang Q Q, Wang W, Liu Z W, Chen H, Fan Z H, Chen R S 2010 Syst. Engineer. Electron. 32 2103 (in Chinese) [王全全, 王唯, 刘志伟, 陈华, 樊振宏, 陈如山 2010 系统工程与电子技术 32 2103]

    [21]

    Gu J J, Gu C Q 2010 J. Microwave 26 7 (in Chinese) [顾晶晶, 顾长青 2010 微波学报 26 7]

    [22]

    Chen X L, Gu C Q, Niu Z Y, Li Z 2012 IEEE International Symposium on Antennas and Propagation & EM Theory Xi’an October 22-26, 2012 p1021

    [23]

    Hu L, Li W L, Mittra R 2010 IEEE Trans. Antenn. Propag. 58 3086

    [24]

    Wang R, Guo L X, Ma J, Wu Z S 2009 Chin. Phys. B 18 1503

    [25]

    Bucci O M, Franceschetti G 1989 IEEE Trans. Antenn. Propag. 37 918

    [26]

    Bucci O M, Franceschetti G 1997 IEEE Trans. Antenn. Propag. 45 1445

    [27]

    Zhao K Z, Vouvakis M N, Lee J F 2005 IEEE Trans. Electromagn. Compat. 47 763

  • [1]

    Harrington R F 1993 Field Computation by Moment Methods (New York: IEEE)

    [2]

    Kang Y M, Xu J X, Xie Y 2005 Chin. Phys. B 14 1691

    [3]

    Wang A Q, Guo L X, Chai C 2011 Chin. Phys. B 20 050202

    [4]

    Cao X Y, Chen M S, Wu X L 2013 Chin. Phys. Lett. 30 028401

    [5]

    Wu H J, Jiang W K, Lu W B 2012 Acta Phys. Sin. 61 054301 (in Chinese) [吴海军, 蒋伟康, 鲁文波 2012 61 054301]

    [6]

    Wang X B, Liang Z C, Wu Z S 2012 Acta Phys. Sin. 61 124104 (in Chinese) [王晓冰, 梁子长, 吴振森 2012 61 124104]

    [7]

    Song J M, Lu C C, Chew W C 1997 IEEE Trans. Antenn. Propag. 45 1488

    [8]

    Li M M, Chen H, Chen R S 2010 Chin. J. Radio Sci. 25 127 (in Chinese) [李猛猛, 陈华, 陈如山 2010 电波科学学报 25 127]

    [9]

    Pan X M, Sheng X Q 2011 Chin. J. Radio Sci. 33 1690 (in Chinese) [潘小敏, 盛新庆 2011 电波科学学报 33 1690]

    [10]

    Ma J, Guo L X, Wang A Q 2009 Chin. Phys. B 18 3431

    [11]

    Nie X C, Yuan N, Li L W 2008 IEEE Trans. Antenn. Propag. 56 3526

    [12]

    Hu J, Wang X F, Nie Z P, Xiao Y H 2007 Chin. J. Radio Sci. 22 614 (in Chinese) [胡俊, 王晓峰, 聂在平, 肖运辉 2007 电波科学学报 22 614]

    [13]

    Chen X L, Gu C Q, Niu Z Y, Li Z 2012 IEEE Trans. Antenn. Propag. 60 1186

    [14]

    Prakash V V S, Mittra R 2003 Microw. Opt. Technol. Lett. 36 95

    [15]

    Sun Y F, Chan C H, Mittra R 2003 IEEE Antennas and Propagation Society International Symposium Columbus, June 22-27, 2003 p1068

    [16]

    Han G D, Gu C Q 2007 Microw. Opt. Technol. Lett. 49 2879

    [17]

    Lucente E, Monorchio A, Mittra R 2008 IEEE Trans. Antenn. Propag. 56 999

    [18]

    Delgado C, Mittra R 2008 IEEE Antenn. Wirel. Propag. Lett. 7 43

    [19]

    Hou Z G, Wang C, Dong C Z, Yin H C 2011 Syst. Engineer. Electron. 33 1458 (in Chinese) [侯兆国, 王超, 董纯柱, 殷红成 2011 系统工程与电子技术 33 1458]

    [20]

    Wang Q Q, Wang W, Liu Z W, Chen H, Fan Z H, Chen R S 2010 Syst. Engineer. Electron. 32 2103 (in Chinese) [王全全, 王唯, 刘志伟, 陈华, 樊振宏, 陈如山 2010 系统工程与电子技术 32 2103]

    [21]

    Gu J J, Gu C Q 2010 J. Microwave 26 7 (in Chinese) [顾晶晶, 顾长青 2010 微波学报 26 7]

    [22]

    Chen X L, Gu C Q, Niu Z Y, Li Z 2012 IEEE International Symposium on Antennas and Propagation & EM Theory Xi’an October 22-26, 2012 p1021

    [23]

    Hu L, Li W L, Mittra R 2010 IEEE Trans. Antenn. Propag. 58 3086

    [24]

    Wang R, Guo L X, Ma J, Wu Z S 2009 Chin. Phys. B 18 1503

    [25]

    Bucci O M, Franceschetti G 1989 IEEE Trans. Antenn. Propag. 37 918

    [26]

    Bucci O M, Franceschetti G 1997 IEEE Trans. Antenn. Propag. 45 1445

    [27]

    Zhao K Z, Vouvakis M N, Lee J F 2005 IEEE Trans. Electromagn. Compat. 47 763

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性.  , 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 刘强, 周海京, 董志伟. 非平行线缆结构电磁耦合建模与准确性验证.  , 2022, 71(18): 180701. doi: 10.7498/aps.71.20220185
    [3] 王仲根, 沐俊文, 林涵, 聂文艳. 新型缩减矩阵构造加快特征基函数法迭代求解.  , 2019, 68(17): 170201. doi: 10.7498/aps.68.20190572
    [4] 丁亚辉, 孙玉发, 朱金玉. 一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法.  , 2018, 67(10): 100201. doi: 10.7498/aps.67.20172543
    [5] 吴庚坤, 宋金宝, 樊伟. 畸形波电磁散射特性分析及其特征识别标识的研究.  , 2017, 66(13): 134302. doi: 10.7498/aps.66.134302
    [6] 柴水荣, 郭立新. 基于压缩感知的一维海面与二维舰船复合后向电磁散射快速算法研究.  , 2015, 64(6): 060301. doi: 10.7498/aps.64.060301
    [7] 范天奇, 郭立新, 金健, 孟肖. 含泡沫面元模型的海面电磁散射研究.  , 2014, 63(21): 214104. doi: 10.7498/aps.63.214104
    [8] 朱艳菊, 江月松, 张崇辉, 辛灿伟. 应用改进的物理光学法和图形计算电磁学近似算法快速计算导体目标电磁散射特性.  , 2014, 63(16): 164202. doi: 10.7498/aps.63.164202
    [9] 王哲, 王秉中. 压缩感知理论在矩量法中的应用.  , 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [10] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析.  , 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [11] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析.  , 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [12] 徐常伟, 朱峰, 刘丽娜, 牛大鹏. 群论在对称结构电磁散射问题中的应用.  , 2013, 62(16): 164102. doi: 10.7498/aps.62.164102
    [13] 张宇, 张晓娟, 方广有. 大尺度分层介质粗糙面电磁散射的特性研究.  , 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [14] 张宇, 杨曦, 苟铭江, 史庆藩. 电磁散射问题的两种反演方法研究.  , 2010, 59(6): 3905-3911. doi: 10.7498/aps.59.3905
    [15] 任新成, 郭立新. 具有二维fBm特征的分层介质粗糙面电磁散射的特性研究.  , 2009, 58(3): 1627-1634. doi: 10.7498/aps.58.1627
    [16] 梁玉, 郭立新. 气泡/泡沫覆盖粗糙海面电磁散射的修正双尺度法研究.  , 2009, 58(9): 6158-6166. doi: 10.7498/aps.58.6158
    [17] 郭立新, 王 蕊, 王运华, 吴振森. 二维粗糙海面散射回波多普勒谱频移及展宽特征.  , 2008, 57(6): 3464-3472. doi: 10.7498/aps.57.3464
    [18] 王 蕊, 郭立新, 秦三团, 吴振森. 粗糙海面及其上方导体目标复合电磁散射的混合算法研究.  , 2008, 57(6): 3473-3480. doi: 10.7498/aps.57.3473
    [19] 代少玉, 吴振森, 徐仰彬. 用基于Daubechies尺度函数的时域多分辨分析计算电磁散射.  , 2007, 56(2): 786-790. doi: 10.7498/aps.56.786
    [20] 郭立新, 吴振森. 二维分数布朗运动(FBM)随机粗糙面电磁散射的基尔霍夫近似.  , 2001, 50(1): 42-47. doi: 10.7498/aps.50.42
计量
  • 文章访问数:  7007
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-24
  • 修回日期:  2013-07-23
  • 刊出日期:  2013-10-05

/

返回文章
返回
Baidu
map