-
In this paper, we develop a series of exponential probability density functions for modeling different distributions of elevation angle (EA) of arrival signals in different tree-dimensional (3D) coverage area scattering environments, and implement the modeling of channel characteristics. First, by assuming that the distribution of azimuth angle is uniform, in this paper the closed-form expressions of power spectrum density (PSD) for both symmetric and asymmetric situations of EA are derived. It can be observed from the analysis results that the PSD is closely correlated to EA function and the boundary angles βmin and βmax of the arrival signals and also to the Doppler shift. Then the spatial fading correlation (SFC) of MIMO multi-antenna signals in 3D environment is derived and simulated. The results show that the SFC between MIMO multi-antenna elements is closely related to βmin and βmax, and the parameter of EA function has little effect on SFC. The exponential EA probability function which is introduced in this paper can be applied to channel parameter estimation of multiple wireless communication environments. Compared with traditional models, this model presents the parameter estimation that satisfies theoretical and empirical values, and this model also expands the modeling of statistical channel in 3D environment.
-
Keywords:
- arrival signal /
- elevation angle function /
- power spectrum density /
- spatial fading correlation
[1] Cho Y S, Kim J, Yang W Y, Kang C G (translated by Sun K, Huang W) 2013 MIMO-OFDM Wireless Communications with MATLAB (Beijing: Publishing House of Electronic Industry) pp3-17 (in Chinese) [Cho Y S, Kim J, Yang W Y, Kang C G著 (孙锴, 黄威 译) 2013 MIMO-OFDM 无线通信技术及MATLAB实现 (北京: 电子工业出版社) 第3–17页]
[2] Petrus P, Reed J H, Rappaport T S 1997 IEEE Commun. Lett. 1 40
[3] Hu H B, Du P, Huang S H, Wang Y 2013 Chin. Phys. B 22 074703
[4] Clarke R H 1968 Bell Syst. Tech. J. 47 957
[5] Ertel R B, Reed J H 1999 IEEE J. Sel. Areas Commun. 17 1829
[6] Petrus P, Reed J H, Rappaport T S 2002 IEEE Trans. Commun. 50 495
[7] Lee W C Y, Brandt R H 1973 IEEE Trans. Veh. Technol. 22 110
[8] Pei F, Zhang J, Pan C 2013 IEEE Veh. Technol. Conf. Las Vegas, America, September 2-5, 2013 p1
[9] Aulin T 1979 IEEE Trans. Veh. Technol. 28 182
[10] Parsons J D, Parsons P J D 2000 The Mobile Radio Propagation Channel (New York: John Wiley) pp137-145
[11] Qu S X, Yeap T 1999 IEEE Trans. Veh. Technol. 48 765
[12] Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211
[13] Zhou J, Qiu L, Hisakazu K 2012 IET Commun. 6 2775
[14] Zhou J, Qiu L, Kikuchi H 2013 J. China Inst. Commun. 34 1 (in Chinese) [周杰, 邱琳, 菊池久和 2013 通信学报 5 1]
[15] Xiao H L, Ouyang S, Nie Z P 2009 Acta Phys. Sin. 58 6779 (in Chinese) [肖海林, 欧阳缮, 聂在平 2009 58 6779]
[16] Lee W C Y 1973 IEEE Trans. Wireless Commun. 21 1214
[17] Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215 (in Chinese) [姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 62 144215]
[18] Fu H Y, Chen J J, Cao S K, Jia X D 2011 Acta Electron. Sin. 10 2221 (in Chinese) [傅海阳, 陈技江, 曹士坷, 贾向东 2011 电子学报 10 2221]
[19] Nie Z P, Xiao H L, Ouyang S 2009 Acta Phys. Sin. 58 3685 (in Chinese) [聂在平, 肖海林, 欧阳缮 2009 58 3685]
[20] Jeffrey A, Zwillinger D 2007 Table of Integrals, Series, and Products (Russian: Academic Press) pp185-193
[21] Yong S K, Thompson J S 2005 IEEE Trans. Wireless Commun. 4 2856
[22] Buyukcorak S, Karabulut K G 2011 IEEE International Conf. on Signal and Commun. Systems Honolulu, America, December 12-14, 2011 p1
[23] Andersen J B, Pedersen K I 2002 IEEE Trans. Antennas Propag. 50 391
[24] Buehrer R M 2002 IEEE Veh. Technol. Conf. Vancouver, Canada, September 24-28, 2002 p1173
-
[1] Cho Y S, Kim J, Yang W Y, Kang C G (translated by Sun K, Huang W) 2013 MIMO-OFDM Wireless Communications with MATLAB (Beijing: Publishing House of Electronic Industry) pp3-17 (in Chinese) [Cho Y S, Kim J, Yang W Y, Kang C G著 (孙锴, 黄威 译) 2013 MIMO-OFDM 无线通信技术及MATLAB实现 (北京: 电子工业出版社) 第3–17页]
[2] Petrus P, Reed J H, Rappaport T S 1997 IEEE Commun. Lett. 1 40
[3] Hu H B, Du P, Huang S H, Wang Y 2013 Chin. Phys. B 22 074703
[4] Clarke R H 1968 Bell Syst. Tech. J. 47 957
[5] Ertel R B, Reed J H 1999 IEEE J. Sel. Areas Commun. 17 1829
[6] Petrus P, Reed J H, Rappaport T S 2002 IEEE Trans. Commun. 50 495
[7] Lee W C Y, Brandt R H 1973 IEEE Trans. Veh. Technol. 22 110
[8] Pei F, Zhang J, Pan C 2013 IEEE Veh. Technol. Conf. Las Vegas, America, September 2-5, 2013 p1
[9] Aulin T 1979 IEEE Trans. Veh. Technol. 28 182
[10] Parsons J D, Parsons P J D 2000 The Mobile Radio Propagation Channel (New York: John Wiley) pp137-145
[11] Qu S X, Yeap T 1999 IEEE Trans. Veh. Technol. 48 765
[12] Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211
[13] Zhou J, Qiu L, Hisakazu K 2012 IET Commun. 6 2775
[14] Zhou J, Qiu L, Kikuchi H 2013 J. China Inst. Commun. 34 1 (in Chinese) [周杰, 邱琳, 菊池久和 2013 通信学报 5 1]
[15] Xiao H L, Ouyang S, Nie Z P 2009 Acta Phys. Sin. 58 6779 (in Chinese) [肖海林, 欧阳缮, 聂在平 2009 58 6779]
[16] Lee W C Y 1973 IEEE Trans. Wireless Commun. 21 1214
[17] Yao S C, Fu S N, Zhang M M, Tang M, Shen P, Liu D M 2013 Acta Phys. Sin. 62 144215 (in Chinese) [姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明 2013 62 144215]
[18] Fu H Y, Chen J J, Cao S K, Jia X D 2011 Acta Electron. Sin. 10 2221 (in Chinese) [傅海阳, 陈技江, 曹士坷, 贾向东 2011 电子学报 10 2221]
[19] Nie Z P, Xiao H L, Ouyang S 2009 Acta Phys. Sin. 58 3685 (in Chinese) [聂在平, 肖海林, 欧阳缮 2009 58 3685]
[20] Jeffrey A, Zwillinger D 2007 Table of Integrals, Series, and Products (Russian: Academic Press) pp185-193
[21] Yong S K, Thompson J S 2005 IEEE Trans. Wireless Commun. 4 2856
[22] Buyukcorak S, Karabulut K G 2011 IEEE International Conf. on Signal and Commun. Systems Honolulu, America, December 12-14, 2011 p1
[23] Andersen J B, Pedersen K I 2002 IEEE Trans. Antennas Propag. 50 391
[24] Buehrer R M 2002 IEEE Veh. Technol. Conf. Vancouver, Canada, September 24-28, 2002 p1173
Catalog
Metrics
- Abstract views: 6437
- PDF Downloads: 549
- Cited By: 0