搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态锂在铜的微通道中的流动行为

唐琬婷 肖时芳 孙学贵 胡望宇 邓辉球

引用本文:
Citation:

液态锂在铜的微通道中的流动行为

唐琬婷, 肖时芳, 孙学贵, 胡望宇, 邓辉球

The flow behavior of liquid Li in Cu micro-channels

Tang Wan-Ting, Xiao Shi-Fang, Sun Xue-Gui, Hu Wang-Yu, Deng Hui-Qiu
PDF
导出引用
  • 本文采用分子动力学方法模拟了液态锂在铜的微通道内的流动行为. 通过构建铜(111), (100)和(110)晶面的微通道内壁, 研究了液态锂在流固界面上的微观结构以及在铜微通道中的流动速度分布情况, 并探讨了微通道尺寸对液态锂流动行为的影响. 研究结果表明铜微通道内的液态锂在靠近铜固体壁附近区域呈有序的层状结构分布, 并受铜内壁晶面微观结构的影响. 铜(111)和(100)面内壁附近的液态锂有序层分布结构更明显. 外驱力作用下的液态锂在微通道内的流动速度呈抛物线分布, 流固界面和流动方向对液态锂的流动速度都会产生影响. 液态锂在铜(111)面内壁上流动的速度最大, 且出现了速度滑移; 在铜(110)面内壁上流动速度最小. 通过对不同尺寸的微通道内液态锂流动行为的研究, 发现流动速度的大小随着微通道尺寸的增加而增大, 且最大速度与微通道尺寸呈二次函数关系, 与有关理论计算结果符合得很好.
    The flow properties of liquid in microchannel have received more attention for their wide applications in different fields. Up to now, little work has focused on the flow behaviors of liquid metals. Recently, liquid lithium (Li) has been considered as one of the candidate plasma-facing materials (PFMs) because of its excellent properties in fusion reactor applications. Considering an accident condition, liquid Li may contact Cu components and erode them, which may cause a serious disaster. The study of the flow properites of liquid Li in Cu microchannel is crucial for the safe application of liquid Li working as a PFM. With the method of non-equilibrium molecular dynamics simulations, in this paper we investigate the flow behavior of liquid Li flowing in Cu microchannels. The density and velocity distributions of Li atoms are obtained. The influence of the dimension of Cu microchannel on the flowing behavior of liquid Li is studied. Comparative analyses are made in three different fluid-solid interfaces, i.e., Li-Cu(100), Li-Cu(110) and Li-Cu(111), respectively. Results show that the density distributions of liquid Li near the interface present an orderly stratified structure. Affected by a larger surface density, a more obviously stratification is found when Li atoms are near the fluid-solid interfaces of Li-Cu(100) and Li-Cu(111) and a wider vacuum gap appears between Li atoms and Cu(111) interface. When Li atoms are near the Li-Cu(110) interface, a lower stratification can be found and an alloy layer appears at Li-Cu(110) interface. Because of its lower surface density, Li atoms spread into the bulk Cu more easily. However, the density distributions have little difference when Li atoms are close to the same fluid-solid interface but with different flow directions. The velocity of Li atoms in microchannel has a parabolic distribution. Because there exists a wider vacuum gap and stratified structure, the Li atoms closed to the Li-Cu (111) interface have the largest velocity. Closed to the Li-Cu (110) interface, Li atoms have the smallest velocity because of the alloy layer and the lower stratified structure. Owing to the diversity of the atomic configurations of Cu (110) face, the liquid Li atoms flow with diverse velocities in different directions on the Li-Cu (110) interface. It is also found that the magnitude of flowing velocity of liquid Li is proportional to the square of microchannel dimension and increases with it. When liquid Li is flowing on the Li-Cu(100) interface, the simulation result reveals that the relationship between microchannel dimension and the largest velocity of Li atoms is in good agreement with Navier-Stokes theory result. It is noteweathy that the present result is smaller than the theoretical result when a negative slip occurs at the Li-Cu(110) interface. In contrast, the result is greater than the theoretical result in the presence of a positive slip at Li-Cu(111) interface.
      通信作者: 邓辉球, hqdeng@hnu.edu.cn
    • 基金项目: 国际热核聚变实验堆ITER计划专项(批准号:2013GB114001)和国家自然科学基金(批准号:51371080)资助的课题.
      Corresponding author: Deng Hui-Qiu, hqdeng@hnu.edu.cn
    • Funds: Project supported by the Chinese National Fusion Project for ITER (Grant No. 2013GB114001) and the National Natural Science Foundation of China (Grant No. 51371080).
    [1]

    Tang G H, Zhang Y H, Emerson D R 2008 Phys. Rev. E 77 046701

    [2]

    Cracknell R F, Nicholson D, Quirke N 1995 Phys. Rev. Lett. 74 2463

    [3]

    Tao R, Quan X B, Xu J Z 2001 J. Eng. Thermophys. 22 575 (in Chinese) [陶然, 权晓波, 徐建中 2001 工程热 22 575]

    [4]

    Bitsanis I, Magda J J, Tirrell M, Davis H T 1987 J. Chem. Phys. 87 1733

    [5]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 55 5305]

    [6]

    Travis K P, Todd B D, Evans D J 1997 Phys. Rev. E 55 4288

    [7]

    Akhmatskaya E, Todd B D, Daivis P J, Evans D J, Gubbins K E, Pozhar L A 1997 J. Chem. Phys. 106 4684

    [8]

    Pozhar L A, Gubbins K E 1993 J. Chem. Phys. 99 8970

    [9]

    Bitsanis I, Somers S A, Davis H T, Tirrell M 1990 J. Chem. Phys. 93 3427

    [10]

    Nagayama G, Cheng P 2004 Int. J. Heat Mass Transfer 47 501

    [11]

    Desai T G 2010 Chem. Phys. Lett. 501 93

    [12]

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706 (in Chinese) [张程宾, 许兆林, 陈永平 2014 63 214706]

    [13]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311

    [14]

    Canles M, Padr J A, Gonzalez L E, Gir A 1993 J. Phys.: Condens. Matter 5 3095

    [15]

    Canales M, Gouzlez L E, Padr J A 1994 Phys. Rev. E 50 3656

    [16]

    Cui Z, Gao F, Cui Z, Qu J 2012 Model. Simul. Mater. Sci. 20 015014

    [17]

    Wang Z H, Ni M J 2012 Heat Mass Transfer 48 253

    [18]

    Allain J P, Coventry M D, Ruzic D N 2007 Phys. Rev. B 76 205434

    [19]

    Deng B Q, Allain J P, Luo Z M, Peng L L, Yan J C 2007 Nucl. Instrum. Meth. B 259 847

    [20]

    Li C Y, Allain J P, Deng B Q 2007 Chin. Phys. B 16 3312

    [21]

    Meng X C, Zuo G Z, Ren J, Sun Z, Xu W, Huang M, Li M H, Deng H Q, Hu J S, Hu W Y 2015 Acta Phys. Sin. 64 212801 (in Chinese) [孟献才, 左桂忠, 任君, 孙震, 徐伟, 黄明, 李美姮, 邓辉球, 胡建生, 胡望宇 2015 64 212801]

    [22]

    Li R Q, Tong L L, Cao X W 2013 Nuclear Fusion and Plasma Physics 33 175 (in Chinese) [李若晴, 佟立丽, 曹学武 2013 核聚变与等离子体物理 33 175]

    [23]

    Topilski L N, Masson X, Porfiri M T, Pinna T, Sponton L L, Andersen J, Takase K, Kurihara R, Sardain P, Girard C 2001 Fusion Eng. Des. 54 627

    [24]

    Zhang B W, Hu W Y, Shu X L 2003 Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory (Changsha: Hunan University Press) p245 (in Chinese) [张邦维, 胡望宇, 舒小林 2003 嵌入原子方法理论及其在材料科学中的应用-原子尺度材料设计理论 (长沙: 湖南大学出版社) 第245页]

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [26]

    Zhang J M, Huang Y H, Xu K W, Vincent J 2007 Chin. Phys. B 16 0210

    [27]

    Gan X L, Xiao S F, Deng H Q, Sun X G, Li X F, Hu W Y 2014 Fusion Eng. Des. 89 2894

    [28]

    Tang J, Yang J 2015 J. Nanopart. Res. 17 299

    [29]

    Nos S 1984 J. Chem. Phys. 81 511

    [30]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [31]

    Thompson P A, Robbins M O 1990 Phys. Rev. A 41 6830

    [32]

    Granick S 1991 Science 253 1374

    [33]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

    [34]

    Chen X, Sun X G, Deng H Q, Xiao S F, Hu W Y 2015 (submitted to Comput. Mater. Sci. for publication)

    [35]

    Travis K P, Gubbins K E 2000 J. Chem. Phys. 112 1984

    [36]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

  • [1]

    Tang G H, Zhang Y H, Emerson D R 2008 Phys. Rev. E 77 046701

    [2]

    Cracknell R F, Nicholson D, Quirke N 1995 Phys. Rev. Lett. 74 2463

    [3]

    Tao R, Quan X B, Xu J Z 2001 J. Eng. Thermophys. 22 575 (in Chinese) [陶然, 权晓波, 徐建中 2001 工程热 22 575]

    [4]

    Bitsanis I, Magda J J, Tirrell M, Davis H T 1987 J. Chem. Phys. 87 1733

    [5]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 55 5305]

    [6]

    Travis K P, Todd B D, Evans D J 1997 Phys. Rev. E 55 4288

    [7]

    Akhmatskaya E, Todd B D, Daivis P J, Evans D J, Gubbins K E, Pozhar L A 1997 J. Chem. Phys. 106 4684

    [8]

    Pozhar L A, Gubbins K E 1993 J. Chem. Phys. 99 8970

    [9]

    Bitsanis I, Somers S A, Davis H T, Tirrell M 1990 J. Chem. Phys. 93 3427

    [10]

    Nagayama G, Cheng P 2004 Int. J. Heat Mass Transfer 47 501

    [11]

    Desai T G 2010 Chem. Phys. Lett. 501 93

    [12]

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706 (in Chinese) [张程宾, 许兆林, 陈永平 2014 63 214706]

    [13]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311

    [14]

    Canles M, Padr J A, Gonzalez L E, Gir A 1993 J. Phys.: Condens. Matter 5 3095

    [15]

    Canales M, Gouzlez L E, Padr J A 1994 Phys. Rev. E 50 3656

    [16]

    Cui Z, Gao F, Cui Z, Qu J 2012 Model. Simul. Mater. Sci. 20 015014

    [17]

    Wang Z H, Ni M J 2012 Heat Mass Transfer 48 253

    [18]

    Allain J P, Coventry M D, Ruzic D N 2007 Phys. Rev. B 76 205434

    [19]

    Deng B Q, Allain J P, Luo Z M, Peng L L, Yan J C 2007 Nucl. Instrum. Meth. B 259 847

    [20]

    Li C Y, Allain J P, Deng B Q 2007 Chin. Phys. B 16 3312

    [21]

    Meng X C, Zuo G Z, Ren J, Sun Z, Xu W, Huang M, Li M H, Deng H Q, Hu J S, Hu W Y 2015 Acta Phys. Sin. 64 212801 (in Chinese) [孟献才, 左桂忠, 任君, 孙震, 徐伟, 黄明, 李美姮, 邓辉球, 胡建生, 胡望宇 2015 64 212801]

    [22]

    Li R Q, Tong L L, Cao X W 2013 Nuclear Fusion and Plasma Physics 33 175 (in Chinese) [李若晴, 佟立丽, 曹学武 2013 核聚变与等离子体物理 33 175]

    [23]

    Topilski L N, Masson X, Porfiri M T, Pinna T, Sponton L L, Andersen J, Takase K, Kurihara R, Sardain P, Girard C 2001 Fusion Eng. Des. 54 627

    [24]

    Zhang B W, Hu W Y, Shu X L 2003 Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory (Changsha: Hunan University Press) p245 (in Chinese) [张邦维, 胡望宇, 舒小林 2003 嵌入原子方法理论及其在材料科学中的应用-原子尺度材料设计理论 (长沙: 湖南大学出版社) 第245页]

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [26]

    Zhang J M, Huang Y H, Xu K W, Vincent J 2007 Chin. Phys. B 16 0210

    [27]

    Gan X L, Xiao S F, Deng H Q, Sun X G, Li X F, Hu W Y 2014 Fusion Eng. Des. 89 2894

    [28]

    Tang J, Yang J 2015 J. Nanopart. Res. 17 299

    [29]

    Nos S 1984 J. Chem. Phys. 81 511

    [30]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [31]

    Thompson P A, Robbins M O 1990 Phys. Rev. A 41 6830

    [32]

    Granick S 1991 Science 253 1374

    [33]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

    [34]

    Chen X, Sun X G, Deng H Q, Xiao S F, Hu W Y 2015 (submitted to Comput. Mater. Sci. for publication)

    [35]

    Travis K P, Gubbins K E 2000 J. Chem. Phys. 112 1984

    [36]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

  • [1] 徐山森, 常健, 翟斌, 朱先念, 魏炳波. 液态五元Zr57Cu20Al10Ni8Ti5合金的微观结构演变与非晶形成机制.  , 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [2] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究.  , 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [3] 赵珍阳, 李涛, 李肖音, 李雄鹰, 李辉. 液态Ag薄膜在修饰的石墨烯表面的形态演变及其界面性质.  , 2017, 66(6): 069601. doi: 10.7498/aps.66.069601
    [4] 吴博强, 刘海蓉, 刘让苏, 莫云飞, 田泽安, 梁永超, 关绍康, 黄昌雄. 冷速对液态金属Mg凝固过程中微观结构演变的影响.  , 2017, 66(1): 016101. doi: 10.7498/aps.66.016101
    [5] 沈明仁, 刘锐, 厚美瑛, 杨明成, 陈科. 自扩散泳微观转动马达的介观模拟.  , 2016, 65(17): 170201. doi: 10.7498/aps.65.170201
    [6] 孟献才, 左桂忠, 任君, 孙震, 徐伟, 黄明, 李美姮, 邓辉球, 胡建生, 胡望宇. HT-7装置液态锂限制器实验中锂的腐蚀与沉积特性的研究.  , 2015, 64(21): 212801. doi: 10.7498/aps.64.212801
    [7] 王琛, 宋海洋, 安敏荣. 界面旋转角对双晶镁力学性质影响的分子动力学模拟.  , 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [8] 张程宾, 许兆林, 陈永平. 粗糙纳通道内流体流动与传热的分子动力学模拟研究.  , 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [9] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究.  , 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [10] 邓阳, 刘让苏, 周群益, 刘海蓉, 梁永超, 莫云飞, 张海涛, 田泽安, 彭平. 熔体初始温度对液态金属Ni凝固过程中微观结构演变影响的模拟研究.  , 2013, 62(16): 166101. doi: 10.7498/aps.62.166101
    [11] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟.  , 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [12] 郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安. 冷速对液态合金Ca50Zn50快速凝固过程中微观结构演变的影响.  , 2012, 61(24): 246102. doi: 10.7498/aps.61.246102
    [13] 刘丽霞, 侯兆阳, 刘让苏. 过冷液体钾形核初期微观动力学机理的模拟研究.  , 2012, 61(5): 056101. doi: 10.7498/aps.61.056101
    [14] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究.  , 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [15] 梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧. 液态Mg7Zn3合金快速凝固过程中微观结构演变机理的模拟研究.  , 2010, 59(11): 7930-7940. doi: 10.7498/aps.59.7930
    [16] 周丽丽, 刘让苏, 侯兆阳, 田泽安, 林 艳, 刘全慧. 冷速对液态金属Pb凝固过程中微观团簇结构演变影响的模拟研究.  , 2008, 57(6): 3653-3660. doi: 10.7498/aps.57.3653
    [17] 侯兆阳, 刘让苏, 王 鑫, 田泽安, 周群益, 陈振华. 熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究.  , 2007, 56(1): 376-383. doi: 10.7498/aps.56.376
    [18] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟.  , 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [19] 易学华, 刘让苏, 田泽安, 侯兆阳, 王 鑫, 周群益. 冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究.  , 2006, 55(10): 5386-5393. doi: 10.7498/aps.55.5386
    [20] 侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星. 冷速对液态金属Na凝固过程中微观结构影响的模拟研究.  , 2005, 54(12): 5723-5729. doi: 10.7498/aps.54.5723
计量
  • 文章访问数:  6582
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-09
  • 修回日期:  2016-01-27
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map