搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗糙势中耦合布朗粒子的定向输运性能

刘晨昊 刘天宇 黄仁忠 高天附 舒咬根

引用本文:
Citation:

粗糙势中耦合布朗粒子的定向输运性能

刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根

Transport performance of coupled Brownian particles in rough ratchet

Liu Chen-Hao, Liu Tian-Yu, Huang Ren-Zhong, Gao Tian-Fu, Shu Yao-Gen
PDF
HTML
导出引用
  • 研究了粗糙棘轮中耦合粒子的定向输运行为, 并进一步讨论了阻尼条件下粗糙棘轮的扰动振幅、扰动波数、粒子间的耦合强度及自由长度等因素对耦合布朗粒子质心平均速度及斯托克斯效率的影响. 研究发现, 合适的粗糙棘轮扰动振幅和扰动波数能促进耦合布朗粒子的定向输运, 同时还能增强其斯托克斯效率. 此外, 合适的耦合强度和自由长度还能使粗糙棘轮的输运性能达到最强. 还发现小扰动振幅条件下, 通过改变耦合强度和自由长度能够诱导粗糙棘轮的流反转. 通过研究更具实际意义的粗糙棘轮, 本文所得结论能为实验上理解分子马达的运动行为提供理论指导, 还可为纳米量级分子机器的设计及粒子分离技术的实现提供实验启发.
    Molecular motor is a kind of protein macromolecule, which moves along the microfilament or microtubule in cell directionally and participates in all kinds of intracellular life activities fully. In order to study the directional motion of molecular motor, a series of ratchet models have been proposed. However, the potentials used in most of the ratchet models are smooth sawtooth potential or harmonic potential. Recently, the experimental studies show that intracellular impurities, spatial inhomogeneity or the folding process of protein can yield deviation from a smooth ratchet profile. This kind of deviation will roughen the known smooth potential. In fact, the roughness of potential is not only closely related to the properties of protein, but also has an important implication in transition rate. Therefore, the rough ratchet will be used to simulate the interaction between molecular motor and trajectory in this work. In addition, experimental researches show that there is a class of molecular motor that can move directionally without dragging load in organism. According to the theory presented by Wang and Oster (Wang H, Oster G 2002 Europhys. Lett. 57 134), the directional transport capability of this kind of motor can be investigated by means of Stokes efficiency. The higher the Stokes efficiency of the motor, the stronger the ability of the motor to use external input energy for directional motion.Here in this work, the overdamped Brownian transport of the two harmonically interacting particles is investigated, and the performance of transport is analyzed by studying the mean velocity and Stokes efficiency of the dimer induced by the introduction of roughness into the potential profile. The influences of the amplitude of perturbation, the wavenumber, the coupling strength and the free length of coupled Brownian particles on the directional transport performance are discussed in detail. According to the structure of ratchet, it is found that the roughness can either restrain or enhance the ratchet performance. It is shown that the appropriate amplitude and wavenumber of rough ratchet can promote the directional transport and enhance the Stokes efficiency of coupled Brownian particles. Moreover, one can distinguish between the optimal value of the coupling strength and free length that leads to a local maximum current. In addition, the directional transport of rough ratchet can be reversed by modulating the suitable coupling strength and free length. The conclusions obtained in this paper can provide theoretical guidance for understanding the motion behavior of molecular motor in experiment, and can also provide experimental inspiration for developing the nanometer machines and realizing the particle separation technology.
      通信作者: 高天附, tianfugao@synu.edu.cn ; 舒咬根, shuyg@itp.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11574329, 11774358, 11347003)、中国科学院前沿科学重点研究项目(批准号: Y7Y1472Y61)、中科院生物物理交叉创新团队项目(批准号: 2060299)、中国科学院战略性先导A项目(批准号: XDA17010504)和辽宁省自然科学基金(批准号: 20180550149)资助的课题
      Corresponding author: Gao Tian-Fu, tianfugao@synu.edu.cn ; Shu Yao-Gen, shuyg@itp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574329, 11774358, 11347003), the Key Research Program of Frontier Sciences of CAS (Grant No. Y7Y1472Y61), the CAS Biophysics Interdisciplinary Innovation Team Project (Grant No. 2060299), the Strategic Priority Research Program (A) of CAS (Grant No. XDA17010504), and the Natural Science Foundation of Liaoning Province, China (Grant No. 20180550149)
    [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [2]

    黎明, 欧阳钟灿, 舒咬根 2016 18 188702Google Scholar

    Li M, Ouyang Z C, Shu Y G 2016 Acta Phys. Sin. 18 188702Google Scholar

    [3]

    郭晓强 2019 自然杂志 41 56

    Guo X Q 2019 Chin. J. Nat. 41 56

    [4]

    Allen R D, Metuzals J, Tasahi I, Brady S T, Gilbert S P 1982 Science 218 1127Google Scholar

    [5]

    Vale R D, Schnapp B J, Reese T S, Sheetz M P 1985 Cell 40 449Google Scholar

    [6]

    Vale R D, Reese T S, Sheetz M P 1985 Cell 42 39Google Scholar

    [7]

    Dey K K, Zhao X, Tansi B M, Mendez-Ortiz W J, Cordova-Figueroa U M, Golestanian R, Sen A 2015 Nano Lett. 15 8311Google Scholar

    [8]

    Nara Y, Niemi H, Steinheimer J, Stöcker H 2017 Phys. Lett. B 769 543

    [9]

    Mateos J L, Arzola A V, Volke-Seplveda K 2011 Phys. Rev. Lett. 106 168104Google Scholar

    [10]

    Minucci S, Pelicci P G 2006 Nat. Rev. Cancer 6 38Google Scholar

    [11]

    Palmigiano A, Santaniello F, Cerutti A, Penkov D, Pu-rushothama D 2018 Sci. Rep. 8 3198Google Scholar

    [12]

    Linke H 2002 Appl. Phys. A 75 167Google Scholar

    [13]

    Van den Heuvel M G L, Dekker C 2007 Science 317 333Google Scholar

    [14]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701Google Scholar

    [15]

    Doering C R 1995 Nuovo Cimento 17 685Google Scholar

    [16]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 72 1766Google Scholar

    [17]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002Google Scholar

    [18]

    Krishnan R, Chacko J, Sahoo M, Jayannavar A M 2006 J. Stat. Mech.: Theory Exp. 2006 P06017

    [19]

    Wang H Y, Bao J D 2013 Physica A 392 4850

    [20]

    Li P C, Chen H B, Fan H, Shen W M, Zheng Z G 2017 J. Phys. A: Math. Theor. 50 475003Google Scholar

    [21]

    延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚 2018 67 190501Google Scholar

    Yan M Y, Zhang X, Liu C H, Huang R Z, Gao T F, Zheng Z G 2018 Acta Phys. Sin. 67 190501Google Scholar

    [22]

    Camargo S, Anteneodo C 2018 Physica A 495 114Google Scholar

    [23]

    Frauenfelder H, Sligar S G, Wolynes P G 1991 Science 254 1598Google Scholar

    [24]

    Frauenfelder H, Wolynes P G, Austin R H 1999 Rev. Mod. Phys. 71 S419Google Scholar

    [25]

    Zwanzig R 1988 Proc. Natl. Acad. Sci. U.S.A. 85 2029Google Scholar

    [26]

    Marchesoni F 1997 Phys. Rev. E 56 2492Google Scholar

    [27]

    Parrondo J M R, Cisneros B J D 2002 Physics A 75 179

    [28]

    Wang H, Oster G 2002 Europhys. Lett. 57 134Google Scholar

    [29]

    Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234Google Scholar

    [30]

    Ai B Q, Xie H Z, Liao H Y, Liu L G 2006 J. Stat. Mech.: Theory Exp. 2006 P09016

    [31]

    Gehlen S V, Evstigneev M, Reimann P 2009 Phys. Rev. E 79 031114Google Scholar

    [32]

    Ai B Q, Zhong W R 2011 Phys. Rev. E 83 051106Google Scholar

  • 图 1  (a) 粗糙势$U\left( x \right)$随扰动振幅$\varepsilon $的变化, 其中扰动波数$H \!=\! 5$; (b) 粗糙势$U\left( x \right)$随扰动波数H的变化, 其中扰动振幅$\varepsilon \!=\! 0.1$

    Fig. 1.  (a) Diagram of the rough potential $U\left( x \right)$ varying with the amplitude of perturbation $\varepsilon $, where perturbed wavenumber $H = 5$; (b) diagram of the rough potential $U\left( x \right)$ varying with perturbed wavenumber H, where the perturbation amplitude $\varepsilon = 0.1$.

    图 2  不同耦合强度下, (a) 质心平均速度$\left\langle V \right\rangle $、(b) 斯托克斯效率$\eta $随粗糙势扰动振幅$\varepsilon $的变化($a = 0.5$, $A = 3$, $H = 5$)

    Fig. 2.  Curves of (a) the center-of-mass velocity $\left\langle V \right\rangle $ and (b) the Stokes efficiency $\eta $ varying with perturbation amplitude $\varepsilon $ for different coupling strength k, where $a = 0.5$, $A = 3$, $H = 5$.

    图 3  不同扰动波数H下 (a) 质心平均速度$\left\langle V \right\rangle $; (b) 斯托克斯效率$\eta $随耦合强度k的变化曲线, 其中$a = 0.2$, $A = 3$, $\varepsilon = 0.1$

    Fig. 3.  Curves of (a) the center-of-mass velocity $\left\langle V \right\rangle $; (b) the Stokes efficiency $\eta $ varying with coupling strength k for different perturbed wavenumber H, where $a = 0.2$, $A = 3$, $\varepsilon = 0.1$.

    图 4  不同噪声强度下, (a) 质心平均速度速度$\left\langle V \right\rangle $、(b) 斯托克斯效率$\eta $随扰动波数H的变化($a \!=\! 0.2$, $k \!=\! 10$, $A \!=\! 3$, $\varepsilon \!=\! 0.1$)

    Fig. 4.  Curves of (a) the center-of-mass velocity $\left\langle V \right\rangle $ and (b) the Stokes efficiency $\eta $ varying with perturbed wavenumber H for different noise intensity D, where $a = 0.2$, $k = 10$, $A = 3$, $\varepsilon = 0.1$.

    图 5  不同耦合强度下, (a) 质心平均速度$\left\langle V \right\rangle $、(b) 斯托克斯效率$\eta $随外力振幅A的变化($a = 0.2$, $H = 5$, $\varepsilon = 0.1$)

    Fig. 5.  Curves of (a) the center-of-mass velocity $\left\langle V \right\rangle $ and (b) the Stokes efficiency $\eta $ varying with amplitude A for different coupling strength k, where $a = 0.2$, $H = 5$, $\varepsilon = 0.1$.

    图 6  (a) 质心平均速度$\left\langle V \right\rangle $随耦合自由长度a的变化($A = 3$, $\varepsilon = 0.1$, $H = 5$, $k = 30$, $D = 0.1$); (b) 质心平均速度$\left\langle V \right\rangle $随耦合自由长度a及耦合强度k的变化($A = 3$, $\varepsilon = 0.1$, $H = 5$, $D = 0.1$)

    Fig. 6.  Curves of (a) the center-of-mass velocity $\left\langle V \right\rangle $ varying with free length a, where $A = 3$, $k = 30$, $\varepsilon = 0.1$, $D = 0.1$; the curves of (b) $\left\langle V \right\rangle $ varying with coupling strength k and free length a, where $A = 3$, $\varepsilon = 0.1$, $k = 30$, $D = 0.1$.

    Baidu
  • [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [2]

    黎明, 欧阳钟灿, 舒咬根 2016 18 188702Google Scholar

    Li M, Ouyang Z C, Shu Y G 2016 Acta Phys. Sin. 18 188702Google Scholar

    [3]

    郭晓强 2019 自然杂志 41 56

    Guo X Q 2019 Chin. J. Nat. 41 56

    [4]

    Allen R D, Metuzals J, Tasahi I, Brady S T, Gilbert S P 1982 Science 218 1127Google Scholar

    [5]

    Vale R D, Schnapp B J, Reese T S, Sheetz M P 1985 Cell 40 449Google Scholar

    [6]

    Vale R D, Reese T S, Sheetz M P 1985 Cell 42 39Google Scholar

    [7]

    Dey K K, Zhao X, Tansi B M, Mendez-Ortiz W J, Cordova-Figueroa U M, Golestanian R, Sen A 2015 Nano Lett. 15 8311Google Scholar

    [8]

    Nara Y, Niemi H, Steinheimer J, Stöcker H 2017 Phys. Lett. B 769 543

    [9]

    Mateos J L, Arzola A V, Volke-Seplveda K 2011 Phys. Rev. Lett. 106 168104Google Scholar

    [10]

    Minucci S, Pelicci P G 2006 Nat. Rev. Cancer 6 38Google Scholar

    [11]

    Palmigiano A, Santaniello F, Cerutti A, Penkov D, Pu-rushothama D 2018 Sci. Rep. 8 3198Google Scholar

    [12]

    Linke H 2002 Appl. Phys. A 75 167Google Scholar

    [13]

    Van den Heuvel M G L, Dekker C 2007 Science 317 333Google Scholar

    [14]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701Google Scholar

    [15]

    Doering C R 1995 Nuovo Cimento 17 685Google Scholar

    [16]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 72 1766Google Scholar

    [17]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002Google Scholar

    [18]

    Krishnan R, Chacko J, Sahoo M, Jayannavar A M 2006 J. Stat. Mech.: Theory Exp. 2006 P06017

    [19]

    Wang H Y, Bao J D 2013 Physica A 392 4850

    [20]

    Li P C, Chen H B, Fan H, Shen W M, Zheng Z G 2017 J. Phys. A: Math. Theor. 50 475003Google Scholar

    [21]

    延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚 2018 67 190501Google Scholar

    Yan M Y, Zhang X, Liu C H, Huang R Z, Gao T F, Zheng Z G 2018 Acta Phys. Sin. 67 190501Google Scholar

    [22]

    Camargo S, Anteneodo C 2018 Physica A 495 114Google Scholar

    [23]

    Frauenfelder H, Sligar S G, Wolynes P G 1991 Science 254 1598Google Scholar

    [24]

    Frauenfelder H, Wolynes P G, Austin R H 1999 Rev. Mod. Phys. 71 S419Google Scholar

    [25]

    Zwanzig R 1988 Proc. Natl. Acad. Sci. U.S.A. 85 2029Google Scholar

    [26]

    Marchesoni F 1997 Phys. Rev. E 56 2492Google Scholar

    [27]

    Parrondo J M R, Cisneros B J D 2002 Physics A 75 179

    [28]

    Wang H, Oster G 2002 Europhys. Lett. 57 134Google Scholar

    [29]

    Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234Google Scholar

    [30]

    Ai B Q, Xie H Z, Liao H Y, Liu L G 2006 J. Stat. Mech.: Theory Exp. 2006 P09016

    [31]

    Gehlen S V, Evstigneev M, Reimann P 2009 Phys. Rev. E 79 031114Google Scholar

    [32]

    Ai B Q, Zhong W R 2011 Phys. Rev. E 83 051106Google Scholar

  • [1] 杨文斌, 张华磊, 齐新华, 车庆丰, 周江宁, 白冰, 陈爽, 母金河. 非平衡等离子体流场相干反斯托克斯拉曼散射光谱计算及振转温度测量.  , 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真.  , 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [3] 刘艳艳, 孙佳明, 范黎明, 高天附, 郑志刚. 非保守力作用下二维耦合布朗粒子的定向输运.  , 2023, 72(4): 040501. doi: 10.7498/aps.72.20221741
    [4] 曹佳慧, 刘艳艳, 艾保全, 黄仁忠, 高天附. 空间非均匀摩擦棘轮的输运性能.  , 2021, 70(23): 230201. doi: 10.7498/aps.70.20210802
    [5] 李瑞涛, 唐刚, 夏辉, 寻之朋, 李嘉翔, 朱磊. 二维随机蜂巢网格熔断动力学过程和熔断面标度性质的数值模拟.  , 2019, 68(5): 050301. doi: 10.7498/aps.68.20181774
    [6] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响.  , 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [7] 延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚. 反馈脉冲棘轮的能量转化效率研究.  , 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [8] 张永建, 叶芳霞, 戴君, 何斌锋, 臧渡洋. 纳米粗糙度对胶体液滴蒸发图案的影响机制.  , 2017, 66(6): 066101. doi: 10.7498/aps.66.066101
    [9] 吕明涛, 延明月, 艾保全, 高天附, 郑志刚. 过阻尼布朗棘轮的斯托克斯效率研究.  , 2017, 66(22): 220501. doi: 10.7498/aps.66.220501
    [10] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究.  , 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [11] 张程宾, 许兆林, 陈永平. 粗糙纳通道内流体流动与传热的分子动力学模拟研究.  , 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [12] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究.  , 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [13] 吴魏霞, 郑志刚. 二维势场中弹性耦合粒子的定向输运研究.  , 2013, 62(19): 190511. doi: 10.7498/aps.62.190511
    [14] 张宝玲, 何智兵, 吴卫东, 刘兴华, 杨向东. 占空比对微球a-C:H薄膜制备的影响.  , 2009, 58(9): 6436-6440. doi: 10.7498/aps.58.6436
    [15] 薛伟, 解国新, 王权, 张淼, 郑蓓蓉. 几种微构件材料的表面能及纳观黏附行为研究.  , 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [16] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响.  , 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [17] 郝鹏飞, 姚朝晖, 何 枫. 粗糙微管道内液体流动特性的实验研究.  , 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [18] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响.  , 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [19] 孙霞, 吴自勤. 规则表面形貌的分形和多重分形描述.  , 2001, 50(11): 2126-2131. doi: 10.7498/aps.50.2126
    [20] 黄炳忠, 余玉贞, 洪国光. Si-SiO2界面的粗糙度.  , 1987, 36(7): 829-837. doi: 10.7498/aps.36.829
计量
  • 文章访问数:  7653
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-06
  • 修回日期:  2019-09-17
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回
Baidu
map