Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The flow behavior of liquid Li in Cu micro-channels

Tang Wan-Ting Xiao Shi-Fang Sun Xue-Gui Hu Wang-Yu Deng Hui-Qiu

Citation:

The flow behavior of liquid Li in Cu micro-channels

Tang Wan-Ting, Xiao Shi-Fang, Sun Xue-Gui, Hu Wang-Yu, Deng Hui-Qiu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The flow properties of liquid in microchannel have received more attention for their wide applications in different fields. Up to now, little work has focused on the flow behaviors of liquid metals. Recently, liquid lithium (Li) has been considered as one of the candidate plasma-facing materials (PFMs) because of its excellent properties in fusion reactor applications. Considering an accident condition, liquid Li may contact Cu components and erode them, which may cause a serious disaster. The study of the flow properites of liquid Li in Cu microchannel is crucial for the safe application of liquid Li working as a PFM. With the method of non-equilibrium molecular dynamics simulations, in this paper we investigate the flow behavior of liquid Li flowing in Cu microchannels. The density and velocity distributions of Li atoms are obtained. The influence of the dimension of Cu microchannel on the flowing behavior of liquid Li is studied. Comparative analyses are made in three different fluid-solid interfaces, i.e., Li-Cu(100), Li-Cu(110) and Li-Cu(111), respectively. Results show that the density distributions of liquid Li near the interface present an orderly stratified structure. Affected by a larger surface density, a more obviously stratification is found when Li atoms are near the fluid-solid interfaces of Li-Cu(100) and Li-Cu(111) and a wider vacuum gap appears between Li atoms and Cu(111) interface. When Li atoms are near the Li-Cu(110) interface, a lower stratification can be found and an alloy layer appears at Li-Cu(110) interface. Because of its lower surface density, Li atoms spread into the bulk Cu more easily. However, the density distributions have little difference when Li atoms are close to the same fluid-solid interface but with different flow directions. The velocity of Li atoms in microchannel has a parabolic distribution. Because there exists a wider vacuum gap and stratified structure, the Li atoms closed to the Li-Cu (111) interface have the largest velocity. Closed to the Li-Cu (110) interface, Li atoms have the smallest velocity because of the alloy layer and the lower stratified structure. Owing to the diversity of the atomic configurations of Cu (110) face, the liquid Li atoms flow with diverse velocities in different directions on the Li-Cu (110) interface. It is also found that the magnitude of flowing velocity of liquid Li is proportional to the square of microchannel dimension and increases with it. When liquid Li is flowing on the Li-Cu(100) interface, the simulation result reveals that the relationship between microchannel dimension and the largest velocity of Li atoms is in good agreement with Navier-Stokes theory result. It is noteweathy that the present result is smaller than the theoretical result when a negative slip occurs at the Li-Cu(110) interface. In contrast, the result is greater than the theoretical result in the presence of a positive slip at Li-Cu(111) interface.
      Corresponding author: Deng Hui-Qiu, hqdeng@hnu.edu.cn
    • Funds: Project supported by the Chinese National Fusion Project for ITER (Grant No. 2013GB114001) and the National Natural Science Foundation of China (Grant No. 51371080).
    [1]

    Tang G H, Zhang Y H, Emerson D R 2008 Phys. Rev. E 77 046701

    [2]

    Cracknell R F, Nicholson D, Quirke N 1995 Phys. Rev. Lett. 74 2463

    [3]

    Tao R, Quan X B, Xu J Z 2001 J. Eng. Thermophys. 22 575 (in Chinese) [陶然, 权晓波, 徐建中 2001 工程热 22 575]

    [4]

    Bitsanis I, Magda J J, Tirrell M, Davis H T 1987 J. Chem. Phys. 87 1733

    [5]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 55 5305]

    [6]

    Travis K P, Todd B D, Evans D J 1997 Phys. Rev. E 55 4288

    [7]

    Akhmatskaya E, Todd B D, Daivis P J, Evans D J, Gubbins K E, Pozhar L A 1997 J. Chem. Phys. 106 4684

    [8]

    Pozhar L A, Gubbins K E 1993 J. Chem. Phys. 99 8970

    [9]

    Bitsanis I, Somers S A, Davis H T, Tirrell M 1990 J. Chem. Phys. 93 3427

    [10]

    Nagayama G, Cheng P 2004 Int. J. Heat Mass Transfer 47 501

    [11]

    Desai T G 2010 Chem. Phys. Lett. 501 93

    [12]

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706 (in Chinese) [张程宾, 许兆林, 陈永平 2014 63 214706]

    [13]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311

    [14]

    Canles M, Padr J A, Gonzalez L E, Gir A 1993 J. Phys.: Condens. Matter 5 3095

    [15]

    Canales M, Gouzlez L E, Padr J A 1994 Phys. Rev. E 50 3656

    [16]

    Cui Z, Gao F, Cui Z, Qu J 2012 Model. Simul. Mater. Sci. 20 015014

    [17]

    Wang Z H, Ni M J 2012 Heat Mass Transfer 48 253

    [18]

    Allain J P, Coventry M D, Ruzic D N 2007 Phys. Rev. B 76 205434

    [19]

    Deng B Q, Allain J P, Luo Z M, Peng L L, Yan J C 2007 Nucl. Instrum. Meth. B 259 847

    [20]

    Li C Y, Allain J P, Deng B Q 2007 Chin. Phys. B 16 3312

    [21]

    Meng X C, Zuo G Z, Ren J, Sun Z, Xu W, Huang M, Li M H, Deng H Q, Hu J S, Hu W Y 2015 Acta Phys. Sin. 64 212801 (in Chinese) [孟献才, 左桂忠, 任君, 孙震, 徐伟, 黄明, 李美姮, 邓辉球, 胡建生, 胡望宇 2015 64 212801]

    [22]

    Li R Q, Tong L L, Cao X W 2013 Nuclear Fusion and Plasma Physics 33 175 (in Chinese) [李若晴, 佟立丽, 曹学武 2013 核聚变与等离子体物理 33 175]

    [23]

    Topilski L N, Masson X, Porfiri M T, Pinna T, Sponton L L, Andersen J, Takase K, Kurihara R, Sardain P, Girard C 2001 Fusion Eng. Des. 54 627

    [24]

    Zhang B W, Hu W Y, Shu X L 2003 Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory (Changsha: Hunan University Press) p245 (in Chinese) [张邦维, 胡望宇, 舒小林 2003 嵌入原子方法理论及其在材料科学中的应用-原子尺度材料设计理论 (长沙: 湖南大学出版社) 第245页]

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [26]

    Zhang J M, Huang Y H, Xu K W, Vincent J 2007 Chin. Phys. B 16 0210

    [27]

    Gan X L, Xiao S F, Deng H Q, Sun X G, Li X F, Hu W Y 2014 Fusion Eng. Des. 89 2894

    [28]

    Tang J, Yang J 2015 J. Nanopart. Res. 17 299

    [29]

    Nos S 1984 J. Chem. Phys. 81 511

    [30]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [31]

    Thompson P A, Robbins M O 1990 Phys. Rev. A 41 6830

    [32]

    Granick S 1991 Science 253 1374

    [33]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

    [34]

    Chen X, Sun X G, Deng H Q, Xiao S F, Hu W Y 2015 (submitted to Comput. Mater. Sci. for publication)

    [35]

    Travis K P, Gubbins K E 2000 J. Chem. Phys. 112 1984

    [36]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

  • [1]

    Tang G H, Zhang Y H, Emerson D R 2008 Phys. Rev. E 77 046701

    [2]

    Cracknell R F, Nicholson D, Quirke N 1995 Phys. Rev. Lett. 74 2463

    [3]

    Tao R, Quan X B, Xu J Z 2001 J. Eng. Thermophys. 22 575 (in Chinese) [陶然, 权晓波, 徐建中 2001 工程热 22 575]

    [4]

    Bitsanis I, Magda J J, Tirrell M, Davis H T 1987 J. Chem. Phys. 87 1733

    [5]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 55 5305]

    [6]

    Travis K P, Todd B D, Evans D J 1997 Phys. Rev. E 55 4288

    [7]

    Akhmatskaya E, Todd B D, Daivis P J, Evans D J, Gubbins K E, Pozhar L A 1997 J. Chem. Phys. 106 4684

    [8]

    Pozhar L A, Gubbins K E 1993 J. Chem. Phys. 99 8970

    [9]

    Bitsanis I, Somers S A, Davis H T, Tirrell M 1990 J. Chem. Phys. 93 3427

    [10]

    Nagayama G, Cheng P 2004 Int. J. Heat Mass Transfer 47 501

    [11]

    Desai T G 2010 Chem. Phys. Lett. 501 93

    [12]

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706 (in Chinese) [张程宾, 许兆林, 陈永平 2014 63 214706]

    [13]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311

    [14]

    Canles M, Padr J A, Gonzalez L E, Gir A 1993 J. Phys.: Condens. Matter 5 3095

    [15]

    Canales M, Gouzlez L E, Padr J A 1994 Phys. Rev. E 50 3656

    [16]

    Cui Z, Gao F, Cui Z, Qu J 2012 Model. Simul. Mater. Sci. 20 015014

    [17]

    Wang Z H, Ni M J 2012 Heat Mass Transfer 48 253

    [18]

    Allain J P, Coventry M D, Ruzic D N 2007 Phys. Rev. B 76 205434

    [19]

    Deng B Q, Allain J P, Luo Z M, Peng L L, Yan J C 2007 Nucl. Instrum. Meth. B 259 847

    [20]

    Li C Y, Allain J P, Deng B Q 2007 Chin. Phys. B 16 3312

    [21]

    Meng X C, Zuo G Z, Ren J, Sun Z, Xu W, Huang M, Li M H, Deng H Q, Hu J S, Hu W Y 2015 Acta Phys. Sin. 64 212801 (in Chinese) [孟献才, 左桂忠, 任君, 孙震, 徐伟, 黄明, 李美姮, 邓辉球, 胡建生, 胡望宇 2015 64 212801]

    [22]

    Li R Q, Tong L L, Cao X W 2013 Nuclear Fusion and Plasma Physics 33 175 (in Chinese) [李若晴, 佟立丽, 曹学武 2013 核聚变与等离子体物理 33 175]

    [23]

    Topilski L N, Masson X, Porfiri M T, Pinna T, Sponton L L, Andersen J, Takase K, Kurihara R, Sardain P, Girard C 2001 Fusion Eng. Des. 54 627

    [24]

    Zhang B W, Hu W Y, Shu X L 2003 Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory (Changsha: Hunan University Press) p245 (in Chinese) [张邦维, 胡望宇, 舒小林 2003 嵌入原子方法理论及其在材料科学中的应用-原子尺度材料设计理论 (长沙: 湖南大学出版社) 第245页]

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [26]

    Zhang J M, Huang Y H, Xu K W, Vincent J 2007 Chin. Phys. B 16 0210

    [27]

    Gan X L, Xiao S F, Deng H Q, Sun X G, Li X F, Hu W Y 2014 Fusion Eng. Des. 89 2894

    [28]

    Tang J, Yang J 2015 J. Nanopart. Res. 17 299

    [29]

    Nos S 1984 J. Chem. Phys. 81 511

    [30]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [31]

    Thompson P A, Robbins M O 1990 Phys. Rev. A 41 6830

    [32]

    Granick S 1991 Science 253 1374

    [33]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

    [34]

    Chen X, Sun X G, Deng H Q, Xiao S F, Hu W Y 2015 (submitted to Comput. Mater. Sci. for publication)

    [35]

    Travis K P, Gubbins K E 2000 J. Chem. Phys. 112 1984

    [36]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

  • [1] Xu Shan-Sen, Chang Jian, Zhai Bin, Zhu Xian-Nian, Wei Bing-Bo. Microscopic structure evolution and amorphous solidification mechanism of liquid quinary Zr57Cu20Al10Ni8Ti5 alloy. Acta Physica Sinica, 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [2] Wei Zhao-Zhao, Ma Xiao, Ke Chang-Bo, Zhang Xin-Ping. Molecular dynamics simulation of migration behavior of FCC-BCC atomic terrace-step phase boundary in iron-based alloy. Acta Physica Sinica, 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [3] Zhao Zhen-Yang, Li Tao, Li Xiao-Yin, Li Xiong-Ying, Li Hui. Interfacial properties and morphological evolution of liquid Ag film on the modified graphene. Acta Physica Sinica, 2017, 66(6): 069601. doi: 10.7498/aps.66.069601
    [4] Wu Bo-Qiang, Liu Hai-Rong, Liu Rang-Su, Mo Yun-Fei, Tian Ze-An, Liang Yong-Chao, Guan Shao-Kang, Huang Chang-Xiong. Simulation study of effect of cooling rate on evolution of microstructures during solidification of liquid Mg. Acta Physica Sinica, 2017, 66(1): 016101. doi: 10.7498/aps.66.016101
    [5] Shen Ming-Ren, Liu Rui, Hou Mei-Ying, Yang Ming-Cheng, Chen Ke. Mesoscale Simulation of self-diffusiophoretic microrotor. Acta Physica Sinica, 2016, 65(17): 170201. doi: 10.7498/aps.65.170201
    [6] Meng Xian-Cai, Zuo Gui-Zhong, Ren Jun, Sun Zhen, Xu Wei, Huang Ming, Li Mei-Heng, Deng Hui-Qiu, Hu Jian-Sheng, Hu Wang-Yu. Study of erosion and deposition characteristics of Li during liquid Li limiter experiment in HT-7. Acta Physica Sinica, 2015, 64(21): 212801. doi: 10.7498/aps.64.212801
    [7] Wang Chen, Song Hai-Yang, An Min-Rong. Molecular dynamics simulation of effect of tilt angle on mechanical property of magnesium bicrystals. Acta Physica Sinica, 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [8] Zhang Cheng-Bin, Xu Zhao-Lin, Chen Yong-Ping. Molecular dynamics simulation on fluid flow and heat transfer in rough nanochannels. Acta Physica Sinica, 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [9] Zheng Xiao-Qing, Yang Yang, Sun De-Yan. Atomistic characterization of a modeled binary ordered alloy solid-liquid interface. Acta Physica Sinica, 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [10] Deng Yang, Liu Rang-Su, Zhou Qun-Yi, Liu Hai-Rong, Liang Yong-Chao, Mo Yun-Fei, Zhang Hai-Tao, Tian Ze-An, Peng Ping. Simulation study of effect of initial melt temperature on microstructure evolution of liquid metal Ni during solidfication process. Acta Physica Sinica, 2013, 62(16): 166101. doi: 10.7498/aps.62.166101
    [11] Ge Song, Chen Min. A molecular dynamics simulation on the relationship between contact angle and solid-liquid interfacial thermal resistance. Acta Physica Sinica, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [12] Zheng Nai-Chao, Liu Hai-Rong, Liu Rang-Su, Liang Yong-Chao, Mo Yun-Fei, Zhou Qun-Yi, Tian Ze-An. Effects of cooling rates on microstructural evolution during solidification process of liquid Ca50Zn50 alloy. Acta Physica Sinica, 2012, 61(24): 246102. doi: 10.7498/aps.61.246102
    [13] Liu Li-Xia, Hou Zhao-Yang, Liu Rang-Su. Simulation study on the dynamic mechanisms of nucleation during the initial stage of supercooled liquid potassium. Acta Physica Sinica, 2012, 61(5): 056101. doi: 10.7498/aps.61.056101
    [14] Xie Hong-Xian, Yu Tao, Liu Bo. Effect of temperature on motion of misfit dislocation in γ/γ'interface of a Ni-based single-crystal superalloy:molecular dynamic simulations. Acta Physica Sinica, 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [15] Liang Yong-Chao, Liu Rang-Su, Zhu Xuan-Min, Zhou Li-Li, Tian Ze-An, Liu Quan-Hui. Simulation study of evolution mechanisms of microstructures during rapid solidification of liquid Mg7Zn3 alloy. Acta Physica Sinica, 2010, 59(11): 7930-7940. doi: 10.7498/aps.59.7930
    [16] Zhou Li-Li, Liu Rang-Su, Hou Zhao-Yang, Tian Ze-An, Lin Yan, Liu Quan-Hui. Simulation study of effects of cooling rate on evolution of micro-cluster structures during solidification of liquid Pb. Acta Physica Sinica, 2008, 57(6): 3653-3660. doi: 10.7498/aps.57.3653
    [17] Hou Zhao-Yang, Liu Rang-Su, Wang Xin, Tian Ze-An, Zhou Qun-Yi, Chen Zhen-Hua. Simulation study of effects of initial melt temperature on microstructure of liquid metal Na during solidification processes. Acta Physica Sinica, 2007, 56(1): 376-383. doi: 10.7498/aps.56.376
    [18] Yang Hong, Chen Min. A molecular dynamics simulation of thermodynamic properties of undercooled liquid Ni2TiAl alloy. Acta Physica Sinica, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [19] Yi Xue-Hua, Liu Rang-Su, Tian Ze-An, Hou Zhao-Yang, Wang Xin, Zhou Qun-Yi. Simulation study of effect of cooling rate on evolution of microstructures during solidification of liquid metal Cu. Acta Physica Sinica, 2006, 55(10): 5386-5393. doi: 10.7498/aps.55.5386
    [20] Hou Zhao-Yang, Liu Rang-Su, Li Chen-Shan, Zhou Qun-Yi, Zheng Cai-Xing. Simulation study of effects of cooling rate on microstructure of liquid metal Na during solidification processes. Acta Physica Sinica, 2005, 54(12): 5723-5729. doi: 10.7498/aps.54.5723
Metrics
  • Abstract views:  6598
  • PDF Downloads:  182
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2015
  • Accepted Date:  27 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map