-
The phase-field crystal method is used to analysis the dislocation annihilation and grain boundary migration mechanism in the grain shrink process of the circular grain which has three different misorientations from the matrix grain. Results show that when the misorientation between the circular grain and the matrix grain is 17°, the structure of grain boundary is composed of dislocations whose cores is so near that can not find a single dislocation. This grain boundary can not be explained by the dislocation model. However the circular grain area decreases linearly with time, which is in good agreement with the classical boundary migration theory. When the misorientation is 4°, the grain boundary structure is composed of discrete dislocations. Dislocations climb along the radial dierction and the grain rotation occurs for the circular grain to adjust the space of dislocations in the process of circular grain shrinkage. Reactions may take place with the dislocatins becoming closer. For the misorientation of 10°, portion of the grain boundary is composed of discrete dislocations and portion of dislocations with cores overlapped. Dislocations climb along the radial direction and tangential motion occurs at the same time in the grain shrinkage process. The coupled motion lead to the dislocations becoming close and reacting with each other.
[1] Chen W M, Wang Z D 2013 Chin. Phys. B 22 098104
[2] Chen W M, He G W, Chen X Y, Wang Z D 2012 Chin. Phys. B 21 106802
[3] Wei C Y, Li S Y 2011 Acta Phys. Sin. 60 100701 (in Chinese)[魏承炀, 李赛毅 2011 60 100701]
[4] Sutton A P, Balluffi R W 1995 Interfaces in Crystalline Materials (Oxford: Oxford University Press) p325
[5] Li C H, Edwards E H, Washburn J, Parker E R 1953 Acta Metall. 1 223
[6] Long J, Wang Z Y, Zhao Y L, Yang T, Chen Z 2013 Acta Phys. Sin. 62 218101 (in Chinese)[龙建, 王诏玉, 赵宇龙, 杨涛, 陈铮 2013 62 218101]
[7] Cahn J W, Taylor J E 2004 Acta Mater. 52 4887
[8] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701
[9] Chen C, Chen Z, Zhang J, Yang T 2012 Acta Phys. Sin. 61 108103 (in Chinese)[陈成, 陈铮, 张静, 杨涛 2012 61 108103]
[10] Ren X, Wang J C, Yang Y J, Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese)[任秀, 王锦程, 杨玉娟, 杨根仓 2010 59 3595]
[11] Yang T, Chen Z, Zhang J, Dong W P, Wu L 2012 Chin. Phys. Lett. 29 078103
[12] Elder K R, Grant M 2004 Phys. Rev. E 70 051605
-
[1] Chen W M, Wang Z D 2013 Chin. Phys. B 22 098104
[2] Chen W M, He G W, Chen X Y, Wang Z D 2012 Chin. Phys. B 21 106802
[3] Wei C Y, Li S Y 2011 Acta Phys. Sin. 60 100701 (in Chinese)[魏承炀, 李赛毅 2011 60 100701]
[4] Sutton A P, Balluffi R W 1995 Interfaces in Crystalline Materials (Oxford: Oxford University Press) p325
[5] Li C H, Edwards E H, Washburn J, Parker E R 1953 Acta Metall. 1 223
[6] Long J, Wang Z Y, Zhao Y L, Yang T, Chen Z 2013 Acta Phys. Sin. 62 218101 (in Chinese)[龙建, 王诏玉, 赵宇龙, 杨涛, 陈铮 2013 62 218101]
[7] Cahn J W, Taylor J E 2004 Acta Mater. 52 4887
[8] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701
[9] Chen C, Chen Z, Zhang J, Yang T 2012 Acta Phys. Sin. 61 108103 (in Chinese)[陈成, 陈铮, 张静, 杨涛 2012 61 108103]
[10] Ren X, Wang J C, Yang Y J, Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese)[任秀, 王锦程, 杨玉娟, 杨根仓 2010 59 3595]
[11] Yang T, Chen Z, Zhang J, Dong W P, Wu L 2012 Chin. Phys. Lett. 29 078103
[12] Elder K R, Grant M 2004 Phys. Rev. E 70 051605
Catalog
Metrics
- Abstract views: 7919
- PDF Downloads: 760
- Cited By: 0