搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Er3+氟化物光纤振荡器中红外超短脉冲的产生

王少奇 邓颖 张永亮 李超 王方 康民强 罗韵 薛海涛 胡东霞 粟敬钦 郑奎兴 朱启华

引用本文:
Citation:

掺Er3+氟化物光纤振荡器中红外超短脉冲的产生

王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华

Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er3+: ZBLAN fiber laser

Wang Shao-Qi, Deng Ying, Zhang Yong-Liang, Li Chao, Wang Fang, Kang Min-Qiang, Luo Yun, Xue Hai-Tao, Hu Dong-Xia, Su Jing-Qin, Zheng Kui-Xing, Zhu Qi-Hua
PDF
导出引用
  • 基于非线性薛定谔方程建立了氟化物(ZrF4-BaF2-LaF3-AlF3-NaF, ZBLAN)光纤振荡器中产生中红外超短脉冲的理论模型, 在此基础上研究了中红外超短脉冲在氟化物光纤振荡器中形成的物理机理, 数值模拟了氟化物光纤振荡器中中红外超短脉冲的演化过程. 分析了腔内净色散和小信号增益系数对振荡器中锁模脉冲产生的影响, 并给出了参数设置范围. 研究发现: 当掺Er3+氟化物光纤长度, 小信号增益系数, 不饱和损耗为一定值时, 腔内净色散在一定范围内才会出现稳定的锁模脉冲, 且随着腔内净色散增加脉冲宽度变宽, 光谱变窄, 峰值功率降低; 当掺Er3+氟化物光纤长度及不饱和损耗一定, 腔内净色散量为合理值, 小信号增益系数在合理的范围时可以得到稳定的锁模脉冲, 且随着小信号增益系数的增加脉冲宽度变宽, 光谱变宽, 峰值功率增加.
    Fiber lasers show several advantages over other types of lasers. They are efficient, compact, and rugged since they require few bulk components and are virtually unaffected by the surrounding environment. Mode-locked mid-infrared (mid-IR) lasers are essential for a wide variety of applications. The promising applications of mode-locked fiber lasers at wavelengths near 3 m include combs generation (metrology), spectroscopic sensors, infrared countermeasures, laser surgery, high-efficient pump sources for longer-wavelength oscillators and mid-IR supercontinuum source pumping. Based on the nonlinear Schrdinger equation (NLSE), a theoretical model of passively mode-locked Er3+-doped fluoride fiber laser using a saturable absorber is set up. Some mechanisms for generating mid-IR ultrashort pulse in fiber lasers are investigated. When the dispersion of the cavity is managed properly, the numerical simulation mainly focuses on the evolution process of mid-IR ultrashort pulse in fluoride fiber oscillators. Influences of the intracavity net dispersion and the small-signal gain on the generation of mode-locked pulses are analyzed in detail. And the reasonable parameter windows are given. Just as the simulated results showed, for a case of 4 m Er3+-doped fluoride fiber, small-signal gain g0= 0.6 m-1 and unsaturated loss l0 = 0.7, the stable mode-locked pulses are achieved by tuning the net intracavity dispersion within a certain range from 0.72 ps2 to 0.83 ps2. As the net intracavity dispersion increases, the output pulse duration increases gradually, while the spectrum width (FWHM) and peak power decrease accordingly. In addition, for the case of 4 m Er3+-doped fluoride fiber, unsaturated loss l0 = 0.7 and net intracavity dispersion of 0.8 ps2, the stable mode-locked pulses can also be obtained by tuning the small-signal gain within a certain range from 0.55 to 0.70 m-1. As the small-signal gain increases, the output pulse duration, spectral width, and peak power increase gradually. This work may be beneficial to the design of experiments for achieving more narrow pulse duration, wide spectral width, and high peak power mid-infrared ultrashort pulse.
      通信作者: 朱启华, qihzhu@163.com
      Corresponding author: Zhu Qi-Hua, qihzhu@163.com
    [1]

    Wang P, Liu J 2013 Chin. J. Lasers 40 0601002 (in Chinese) [王 璞, 刘 江 2013 中国激光 40 0601002]

    [2]

    Chen H, Li J F, Ou Z H, Yang Y, Chen M, Luo H Y, Wei T, Liu Y Z 2011 Lasers Optoelectron. Prog. 48 111402 (in Chinese) [陈昊, 李剑峰, 欧中华, 杨怡, 陈明, 罗鸿禹, 魏涛, 刘永智 2011 激光与光电子学进展 48 111402]

    [3]

    Walsh B 2009 Laser Phys. 19 855

    [4]

    Zhu F, Hundertmark H, Kolomenskii A A, Strohaber J, Holzwarth R, Schuessler H A 2011 Opt. Lett. 38 2360

    [5]

    Wei C, Zhu X S, Norwood R A, Song F, Peyghambarian N 2013 Opt. Express 21 29488

    [6]

    Wei C, Zhu X S, Norwood R A, Peyghambarian N 2012 Opt. Lett. 37 3849

    [7]

    Wang P, Yang L M, Liu J 2013 Opt. Express 21 1798

    [8]

    Liu J, Wang P 2012 Chin. J. Lasers 39 0902001 (in Chinese) [刘江, 王璞 2012 中国激光 39 0902001]

    [9]

    Renard W, Canat G, Bourdon P 2012 Opt. Lett. 37 377

    [10]

    Yang W Q, Zhang B, Hou J, Yin K, Liu Z J 2014 Chin. Phys. B 23 054208

    [11]

    Haboucha A, Fortin V, Bernier M, Genest J, Messaddeq Y, Valle R 2014 Opt. Lett. 39 3294

    [12]

    Li J F, Hudson D D, Liu Y, Jackson S D 2012 Opt. Lett. 37 3747

    [13]

    Hu T, Hudson D D, Jackson S D 2014 Opt. Lett. 39 2133

    [14]

    Zhao Y Q, Zhu H Y, Liu J H, Sun D C, Li F M 1997 Acta Phys. Sin. 46 2174 (in Chinese) [赵应桥, 朱鹤元, 刘建华, 孙迭篪, 李富铭 1997 46 2174]

    [15]

    Cao W H, Zhang Y W, Liu S H, Guo Q, Xu W C 1997 Acta Phys. Sin. 46 919 (in Chinese) [曹文华, 张有为, 刘颂豪, 郭旗, 徐文成 1997 46 919]

    [16]

    Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 4731 (in Chinese) [赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 58 4731]

    [17]

    Agrawal G P 2013 Nonlinear Fiber Optics Fifth Edition (London: Academic Press) pp57-59

  • [1]

    Wang P, Liu J 2013 Chin. J. Lasers 40 0601002 (in Chinese) [王 璞, 刘 江 2013 中国激光 40 0601002]

    [2]

    Chen H, Li J F, Ou Z H, Yang Y, Chen M, Luo H Y, Wei T, Liu Y Z 2011 Lasers Optoelectron. Prog. 48 111402 (in Chinese) [陈昊, 李剑峰, 欧中华, 杨怡, 陈明, 罗鸿禹, 魏涛, 刘永智 2011 激光与光电子学进展 48 111402]

    [3]

    Walsh B 2009 Laser Phys. 19 855

    [4]

    Zhu F, Hundertmark H, Kolomenskii A A, Strohaber J, Holzwarth R, Schuessler H A 2011 Opt. Lett. 38 2360

    [5]

    Wei C, Zhu X S, Norwood R A, Song F, Peyghambarian N 2013 Opt. Express 21 29488

    [6]

    Wei C, Zhu X S, Norwood R A, Peyghambarian N 2012 Opt. Lett. 37 3849

    [7]

    Wang P, Yang L M, Liu J 2013 Opt. Express 21 1798

    [8]

    Liu J, Wang P 2012 Chin. J. Lasers 39 0902001 (in Chinese) [刘江, 王璞 2012 中国激光 39 0902001]

    [9]

    Renard W, Canat G, Bourdon P 2012 Opt. Lett. 37 377

    [10]

    Yang W Q, Zhang B, Hou J, Yin K, Liu Z J 2014 Chin. Phys. B 23 054208

    [11]

    Haboucha A, Fortin V, Bernier M, Genest J, Messaddeq Y, Valle R 2014 Opt. Lett. 39 3294

    [12]

    Li J F, Hudson D D, Liu Y, Jackson S D 2012 Opt. Lett. 37 3747

    [13]

    Hu T, Hudson D D, Jackson S D 2014 Opt. Lett. 39 2133

    [14]

    Zhao Y Q, Zhu H Y, Liu J H, Sun D C, Li F M 1997 Acta Phys. Sin. 46 2174 (in Chinese) [赵应桥, 朱鹤元, 刘建华, 孙迭篪, 李富铭 1997 46 2174]

    [15]

    Cao W H, Zhang Y W, Liu S H, Guo Q, Xu W C 1997 Acta Phys. Sin. 46 919 (in Chinese) [曹文华, 张有为, 刘颂豪, 郭旗, 徐文成 1997 46 919]

    [16]

    Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 4731 (in Chinese) [赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 58 4731]

    [17]

    Agrawal G P 2013 Nonlinear Fiber Optics Fifth Edition (London: Academic Press) pp57-59

  • [1] 杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪. 多孤子和类噪声脉冲共存的锁模光纤激光器.  , 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [2] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器.  , 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [3] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化.  , 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [4] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究.  , 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [5] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳.  , 2018, 67(9): 094207. doi: 10.7498/aps.67.20172503
    [6] 刘江, 刘晨, 师红星, 王璞. 203W全光纤全保偏结构皮秒掺铥光纤激光器.  , 2016, 65(19): 194208. doi: 10.7498/aps.65.194208
    [7] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波.  , 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [8] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇. 基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量.  , 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [9] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器.  , 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [10] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲.  , 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [11] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究.  , 2012, 61(11): 114204. doi: 10.7498/aps.61.114204
    [12] 王擂然, 刘雪明, 宫永康. 基于高能量耗散型脉冲掺铒光纤激光器的实验研究.  , 2010, 59(9): 6200-6204. doi: 10.7498/aps.59.6200
    [13] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器.  , 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [14] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生.  , 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [15] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究.  , 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [16] 邢文鑫, 张巍, 石立超, 王雯, 赵红, 李志广, 黄翊东, 彭江得. 用于气体痕量检测的中红外空心布拉格光纤.  , 2010, 59(12): 8640-8645. doi: 10.7498/aps.59.8640
    [17] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响.  , 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [18] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究.  , 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [19] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器.  , 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [20] 李曙光, 周桂耀, 邢光龙, 侯蓝田, 王清月, 栗岩锋, 胡明列. 微结构光纤中超短激光脉冲传输的数值模拟.  , 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
计量
  • 文章访问数:  6754
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-07
  • 修回日期:  2015-12-03
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map