搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热敏神经元网络中螺旋波死亡和破裂的数值模拟

马军 谢振博 陈江星

引用本文:
Citation:

热敏神经元网络中螺旋波死亡和破裂的数值模拟

马军, 谢振博, 陈江星

Numerical study of the death and breakup of spiral wave in the networks of thermosensitive neurons

Ma Jun, Xie Zhen-Bo, Chen Jiang-Xing
PDF
导出引用
  • 实验发现大脑皮层内出现螺旋波且螺旋波对神经元电信号传递有积极作用.利用细胞网络方法从对大脑皮层观察到的螺旋波进行数值模拟.以包含温度因子的热敏神经元模型在二维空间构造规则网络,研究了神经元膜片温度参数对神经元网络中螺旋波演化影响;定义了一类统计同步因子来刻画温度因子引起螺旋波相变(破裂和死亡)的临界条件.发现在规则网络下,当温度超过一定值后螺旋波会死亡和消失而导致整个网络达到均匀同步;在考虑了弱通道噪声情况下,螺旋波温度超越一定临界值则引起螺旋波的破裂.进一步分析了暂时性发烧昏迷的可能机制在于神经系统某些功能区螺旋波传播电信号的中断.
    The experimential evidences confirm that spiral waves are observed in the disinhibited mammalian neocortex. The scheme of ceullar networks is used to simulate the formation and the evolution of spiral wave in the neocortical slices. The regular networks of neurons are constructed in the two-dimensional space, the dynamical properties of thermosensitive neurons is described by temperature factor, and the effect of membrane temperature on the evolution of spiral wave is investigated in detail. A statistical factor of synchronization is defined to measure the critical condition inducing phase transition of spiral wave (death or breakup) by the factor of temperature of membrane. It is confirmed that spiral wave is removed and the whole networks become homogeneous and synchronous completely when the membrane temperature exceeds a certain threshold; the breakup of spiral wave is induced in the presence of weak channel noise being considered. Furthermore, it is suggested that the mechanism of temporary heat stupor could be the blocking of spiral wave propagation in some functional domain.
    • 基金项目: 国家自然科学基金(批准号: 11005026)和甘肃省教育厅研究生导师基金(批准号: 1010ZTC088)资助的课题.
    • Funds: Project supported by the National Natural Science Fundation of China (Grant No. 11005026) and the Educational Tutors Fund of Gansu Province, China (Grant No. 1010ZTC088).
    [1]

    Gray R A, Pertsov A M, Jalife J 1998 Nature 392 75

    [2]

    Biktashev V N, Holden A V 1998 Chaos 8 48

    [3]

    Cherry E M, Fenton F H 2008 New J. Phys. 10 125016

    [4]

    Fenton F H, Luther S, Otani N F 2009 Circulation 120 467

    [5]

    Garzon A, Roman O G, Fenton F H 2009 Phys. Rev. E 80 021932

    [6]

    Ma J, Ying H, Li Y L 2007 Chin. Phys. 16 955

    [7]

    Ma J, Jin W Y, Li Y L, Chen Y 2007 Acta Phys. Sin. 56 2456 (in Chinese) [马军, 靳伍银, 李延龙, 陈勇 2007 56 2456]

    [8]

    Deng M Y, Shi J, Li H B, Kong L J, Liu M R 2007 Acta Phys. Sin.56 2012 (in Chinese) [邓敏艺, 施娟, 李华兵, 孔令江, 刘慕仁 2007 56 2012]

    [9]

    Liu F C, Wang X F, Li X C, Dong L F 2007 Chin. Phys. 16 2640

    [10]

    Yin X Z, Liu Y 2008 Acta Phys. Sin. 57 6844 (in Chinese) [尹小舟, 刘勇 2008 57 6844]

    [11]

    Tang J, Ma J, Yi M, Jia Y 2008 Chin. Phys. B 17 4100

    [12]

    Ma J, Wang C N, Jin W Y, Li Y L, Pu Z S 2008 Chin. Phys. B 172844

    [13]

    Ma J, Yi M, Li B W, Li Y L 2008 Chin. Phys. B 17 2438

    [14]

    Gan Z N, Ma J, Zhang G Y, Chen Y 2008 Chin. Phys. B 17 4047

    [15]

    Zhang G Y, Ma J, Yu L C, Chen Y 2008 Chin. Phys. B 17 4107

    [16]

    Dai Y, Tang G N 2009 Acta Phys. Sin. 58 1491 (in Chinese) [戴瑜, 唐国宁 2009 58 1491]

    [17]

    Zhang L S, Deng M Y, Kong L J, Liu M R, Tang G N 2009 ActaPhys. Sin. 58 4493 (in Chinese) [张立升, 邓敏艺, 孔令江, 刘慕仁, 唐国宁2009 58 4493]

    [18]

    Qiu K, Tang J, Ma J, Luo J M 2010 Chin. Phys. B 19 030508

    [19]

    Gan Z N, Chen X M 2010 Chin. Phys. B 19 050514

    [20]

    Qian Y, Huang X D, Liao X H, Hu G 2010 Chin. Phys. B 19050513

    [21]

    Xie L L, Gao J H 2010 Chin. Phys. B 19 060516

    [22]

    Tang D N, Tang G N 2010 Acta Phys. Sin. 59 2319 (in Chinese) [唐冬妮, 唐国宁 2010 59 2319]

    [23]

    Tang D N, Zhang X, Ren W, Tang G N 2010 Acta Phys. Sin. 595313 (in Chinese) [唐冬妮, 张旭, 任卫, 唐国宁 2010 59 5313]

    [24]

    Zhong M, Tang G N 2010 Acta Phys. Sin. 59 1593 (in Chinese) [钟敏, 唐国宁 2010 59 1593]

    [25]

    Dai Y, Wei H M, Tang G N 2010 Acta Phys. Sin. 59 5979 (in Chinese) [戴瑜, 韦海明, 唐国宁 2010 59 5979]

    [26]

    Wei H M, Tang G N 2011 Acta Phys. Sin. 60 030501 (in Chinese) [韦海明, 唐国宁 2011 60 88 ]

    [27]

    Deng M Y, Tang G N, Kong L J, Liu M R 2010 Acta Phys. Sin.59 2339 (in Chinese) [邓敏艺, 唐国宁, 孔令江, 刘慕仁 2010 59 2339]

    [28]

    Wei H M, Tang G N 2011 Acta Phys. Sin. 60 040504 (in Chinese) [韦海明, 唐国宁 2011 60 66]

    [29]

    Deng M Y, Tang G N, Kong L J, Liu M R 2011 Chin. Phys. B 20020510

    [30]

    Yuan G Y 2011 Chin. Phys. B 20 040503

    [31]

    Fu Y Q, Zhang H, Cao Z J 2005 Phys. Rev. E 72 046206

    [32]

    Zhang H, Chen J X, Li Y Q 2006 J. Chem. Phys. 125 204503

    [33]

    Cao Z J, Li P F, Zhang H 2007 Chaos 17 015107

    [34]

    Yuan G Y, Yang S P, Wang G R, Chen S G 2008 Chin. Phys. B 171925

    [35]

    Stamp A T, Osipov G V, Collins J J 2002 Chaos 12 931

    [36]

    Zhong M, Tang G N 2010 Acta Phys. Sin. 59 3070 (in Chinese) [钟敏, 唐国宁 2010 59 3070]

    [37]

    Chen J X, Zhang H, Li Y Q 2006 J. Chem. Phys. 124 014505

    [38]

    Chen J X, Hu B B 2008 Euro Phys. Lett. 84 34002

    [39]

    Chen J X, Xu J R, Yuan X P 2009 J. Phys. Chem. B 11 849

    [40]

    Tang J, Jia Y, Ma J 2009 Commun. Theor. Phys. 51 941

    [41]

    Ouyang Q, Felesselles J M 1996 Nature 379 143

    [42]

    Ouyang Q , Swinney H L, Li G 2000 Phys. Rev. Lett. 84 1047

    [43]

    Zhou L Q, Ouyang Q 2000 Phys. Rev. Lett. 85 1650

    [44]

    Fenton F H, Cherry E M, Hastings H M 2002 Chaos 12 852

    [45]

    Yang J Z, Xie F G, Qu Z L 2003 Phys. Rev. Lett. 91 148302

    [46]

    Bär M, Brusch L, Or-Guil M 2004 Phys. Rev. Lett. 92 119801

    [47]

    Huang X Y, Troy W C, Yang Q 2004 J. Neurosci. 24 9897

    [48]

    Schiff S J, Huang X Y, Wu J Y 2007 Phys. Rev. Lett. 98 178102

    [49]

    He D H, Shi P L, Stone L W 2003 Phys. Rev. E 67 27201

    [50]

    Woo S J, Lee J, Lee J K 2003 Phys. Rev. E 68 016208

    [51]

    Perc M 2007 Chaos, Solitons and Fractals 31 280

    [52]

    Ma J, Wu Y, Ying H P 2011 Chin. Sci. Bull. 56 151

    [53]

    Ma J, Yang L J, Wu Y 2010 Commun. Theor. Phys. 54 583

    [54]

    Ma J, Wang C N, Jin W Y 2010 Appl. Math. Comput. 217 3844

    [55]

    Hodgkin A L, Huxley A F 1952 J. Phys. London 117 500

    [56]

    Braun H A, Wissing H, Schäfer 1994 Nature 367 270

    [57]

    Braun H A, Schafer K, Voigt K 1997 J. Comp. Neurol. 4 335

    [58]

    Gong Y B, Xu B, Xu Q 2006 Phys. Rev. E 73 046137

    [59]

    Sun X J, Perc M, Lu Q S 2008 Chaos 18 023102

    [60]

    Sun X J, Lu Q S, Kurth J 2009 Int. J. Bifur. Chaos 19 737

    [61]

    Wang Q Y, Perc M, Duan Z S 2008 Phys. Lett. A 372 5681

    [62]

    Yu G, Ma J, Tang J 2010 Int. J. Mod. Phys. B 24 4555

    [63]

    Fox R F, Lu Y N 1994 Phys. Rev. E 49 3421

  • [1]

    Gray R A, Pertsov A M, Jalife J 1998 Nature 392 75

    [2]

    Biktashev V N, Holden A V 1998 Chaos 8 48

    [3]

    Cherry E M, Fenton F H 2008 New J. Phys. 10 125016

    [4]

    Fenton F H, Luther S, Otani N F 2009 Circulation 120 467

    [5]

    Garzon A, Roman O G, Fenton F H 2009 Phys. Rev. E 80 021932

    [6]

    Ma J, Ying H, Li Y L 2007 Chin. Phys. 16 955

    [7]

    Ma J, Jin W Y, Li Y L, Chen Y 2007 Acta Phys. Sin. 56 2456 (in Chinese) [马军, 靳伍银, 李延龙, 陈勇 2007 56 2456]

    [8]

    Deng M Y, Shi J, Li H B, Kong L J, Liu M R 2007 Acta Phys. Sin.56 2012 (in Chinese) [邓敏艺, 施娟, 李华兵, 孔令江, 刘慕仁 2007 56 2012]

    [9]

    Liu F C, Wang X F, Li X C, Dong L F 2007 Chin. Phys. 16 2640

    [10]

    Yin X Z, Liu Y 2008 Acta Phys. Sin. 57 6844 (in Chinese) [尹小舟, 刘勇 2008 57 6844]

    [11]

    Tang J, Ma J, Yi M, Jia Y 2008 Chin. Phys. B 17 4100

    [12]

    Ma J, Wang C N, Jin W Y, Li Y L, Pu Z S 2008 Chin. Phys. B 172844

    [13]

    Ma J, Yi M, Li B W, Li Y L 2008 Chin. Phys. B 17 2438

    [14]

    Gan Z N, Ma J, Zhang G Y, Chen Y 2008 Chin. Phys. B 17 4047

    [15]

    Zhang G Y, Ma J, Yu L C, Chen Y 2008 Chin. Phys. B 17 4107

    [16]

    Dai Y, Tang G N 2009 Acta Phys. Sin. 58 1491 (in Chinese) [戴瑜, 唐国宁 2009 58 1491]

    [17]

    Zhang L S, Deng M Y, Kong L J, Liu M R, Tang G N 2009 ActaPhys. Sin. 58 4493 (in Chinese) [张立升, 邓敏艺, 孔令江, 刘慕仁, 唐国宁2009 58 4493]

    [18]

    Qiu K, Tang J, Ma J, Luo J M 2010 Chin. Phys. B 19 030508

    [19]

    Gan Z N, Chen X M 2010 Chin. Phys. B 19 050514

    [20]

    Qian Y, Huang X D, Liao X H, Hu G 2010 Chin. Phys. B 19050513

    [21]

    Xie L L, Gao J H 2010 Chin. Phys. B 19 060516

    [22]

    Tang D N, Tang G N 2010 Acta Phys. Sin. 59 2319 (in Chinese) [唐冬妮, 唐国宁 2010 59 2319]

    [23]

    Tang D N, Zhang X, Ren W, Tang G N 2010 Acta Phys. Sin. 595313 (in Chinese) [唐冬妮, 张旭, 任卫, 唐国宁 2010 59 5313]

    [24]

    Zhong M, Tang G N 2010 Acta Phys. Sin. 59 1593 (in Chinese) [钟敏, 唐国宁 2010 59 1593]

    [25]

    Dai Y, Wei H M, Tang G N 2010 Acta Phys. Sin. 59 5979 (in Chinese) [戴瑜, 韦海明, 唐国宁 2010 59 5979]

    [26]

    Wei H M, Tang G N 2011 Acta Phys. Sin. 60 030501 (in Chinese) [韦海明, 唐国宁 2011 60 88 ]

    [27]

    Deng M Y, Tang G N, Kong L J, Liu M R 2010 Acta Phys. Sin.59 2339 (in Chinese) [邓敏艺, 唐国宁, 孔令江, 刘慕仁 2010 59 2339]

    [28]

    Wei H M, Tang G N 2011 Acta Phys. Sin. 60 040504 (in Chinese) [韦海明, 唐国宁 2011 60 66]

    [29]

    Deng M Y, Tang G N, Kong L J, Liu M R 2011 Chin. Phys. B 20020510

    [30]

    Yuan G Y 2011 Chin. Phys. B 20 040503

    [31]

    Fu Y Q, Zhang H, Cao Z J 2005 Phys. Rev. E 72 046206

    [32]

    Zhang H, Chen J X, Li Y Q 2006 J. Chem. Phys. 125 204503

    [33]

    Cao Z J, Li P F, Zhang H 2007 Chaos 17 015107

    [34]

    Yuan G Y, Yang S P, Wang G R, Chen S G 2008 Chin. Phys. B 171925

    [35]

    Stamp A T, Osipov G V, Collins J J 2002 Chaos 12 931

    [36]

    Zhong M, Tang G N 2010 Acta Phys. Sin. 59 3070 (in Chinese) [钟敏, 唐国宁 2010 59 3070]

    [37]

    Chen J X, Zhang H, Li Y Q 2006 J. Chem. Phys. 124 014505

    [38]

    Chen J X, Hu B B 2008 Euro Phys. Lett. 84 34002

    [39]

    Chen J X, Xu J R, Yuan X P 2009 J. Phys. Chem. B 11 849

    [40]

    Tang J, Jia Y, Ma J 2009 Commun. Theor. Phys. 51 941

    [41]

    Ouyang Q, Felesselles J M 1996 Nature 379 143

    [42]

    Ouyang Q , Swinney H L, Li G 2000 Phys. Rev. Lett. 84 1047

    [43]

    Zhou L Q, Ouyang Q 2000 Phys. Rev. Lett. 85 1650

    [44]

    Fenton F H, Cherry E M, Hastings H M 2002 Chaos 12 852

    [45]

    Yang J Z, Xie F G, Qu Z L 2003 Phys. Rev. Lett. 91 148302

    [46]

    Bär M, Brusch L, Or-Guil M 2004 Phys. Rev. Lett. 92 119801

    [47]

    Huang X Y, Troy W C, Yang Q 2004 J. Neurosci. 24 9897

    [48]

    Schiff S J, Huang X Y, Wu J Y 2007 Phys. Rev. Lett. 98 178102

    [49]

    He D H, Shi P L, Stone L W 2003 Phys. Rev. E 67 27201

    [50]

    Woo S J, Lee J, Lee J K 2003 Phys. Rev. E 68 016208

    [51]

    Perc M 2007 Chaos, Solitons and Fractals 31 280

    [52]

    Ma J, Wu Y, Ying H P 2011 Chin. Sci. Bull. 56 151

    [53]

    Ma J, Yang L J, Wu Y 2010 Commun. Theor. Phys. 54 583

    [54]

    Ma J, Wang C N, Jin W Y 2010 Appl. Math. Comput. 217 3844

    [55]

    Hodgkin A L, Huxley A F 1952 J. Phys. London 117 500

    [56]

    Braun H A, Wissing H, Schäfer 1994 Nature 367 270

    [57]

    Braun H A, Schafer K, Voigt K 1997 J. Comp. Neurol. 4 335

    [58]

    Gong Y B, Xu B, Xu Q 2006 Phys. Rev. E 73 046137

    [59]

    Sun X J, Perc M, Lu Q S 2008 Chaos 18 023102

    [60]

    Sun X J, Lu Q S, Kurth J 2009 Int. J. Bifur. Chaos 19 737

    [61]

    Wang Q Y, Perc M, Duan Z S 2008 Phys. Lett. A 372 5681

    [62]

    Yu G, Ma J, Tang J 2010 Int. J. Mod. Phys. B 24 4555

    [63]

    Fox R F, Lu Y N 1994 Phys. Rev. E 49 3421

  • [1] 白婧, 关富荣, 唐国宁. 神经元网络中局部同步引发的各种效应.  , 2021, 70(17): 170502. doi: 10.7498/aps.70.20210142
    [2] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制.  , 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [3] 黄志精, 李倩昀, 白婧, 唐国宁. 在具有排斥耦合的神经元网络中有序斑图的熵测量.  , 2019, 68(11): 110503. doi: 10.7498/aps.68.20190231
    [4] 俞炜, 邓梓龙, 吴苏晨, 于程, 王超. Y型微通道内双重乳液流动破裂机理.  , 2019, 68(5): 054701. doi: 10.7498/aps.68.20181877
    [5] 汪芃, 李倩昀, 黄志精, 唐国宁. 在兴奋-抑制混沌神经元网络中有序波的自发形成.  , 2018, 67(17): 170501. doi: 10.7498/aps.67.20180506
    [6] 汪芃, 李倩昀, 唐国宁. Hindmarsh-Rose神经元阵列自发产生螺旋波的研究.  , 2018, 67(3): 030502. doi: 10.7498/aps.67.20172140
    [7] 徐莹, 王春妮, 靳伍银, 马军. 梯度耦合下神经元网络中靶波和螺旋波的诱发研究.  , 2015, 64(19): 198701. doi: 10.7498/aps.64.198701
    [8] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化.  , 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [9] 周振玮, 王利利, 乔成功, 陈醒基, 田涛涛, 唐国宁. 用同步复极化终止心脏中的螺旋波和时空混沌.  , 2013, 62(15): 150508. doi: 10.7498/aps.62.150508
    [10] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究.  , 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [11] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究.  , 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [12] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌.  , 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [13] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波.  , 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [14] 邝玉兰, 唐国宁. 心脏中的螺旋波和时空混沌的抑制研究.  , 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [15] 刘少宝, 吴莹, 郝忠文, 李银军, 贾宁. 钠离子和钾离子通道噪声扰动对神经网络时空模式的影响.  , 2012, 61(2): 020503. doi: 10.7498/aps.61.020503
    [16] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步.  , 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [17] 韦海明, 唐国宁. 交替行为对螺旋波影响的数值模拟研究.  , 2011, 60(4): 040504. doi: 10.7498/aps.60.040504
    [18] 田昌海, 邓敏艺, 孔令江, 刘慕仁. 螺旋波动力学性质的元胞自动机有向小世界网络研究.  , 2011, 60(8): 080505. doi: 10.7498/aps.60.080505
    [19] 甘正宁, 马 军, 张国勇, 陈 勇. 小世界网络上螺旋波失稳的研究.  , 2008, 57(9): 5400-5406. doi: 10.7498/aps.57.5400
    [20] 马 军, 靳伍银, 李延龙, 陈 勇. 随机相位扰动抑制激发介质中漂移的螺旋波.  , 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
计量
  • 文章访问数:  7962
  • PDF下载量:  608
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-23
  • 修回日期:  2011-05-25
  • 刊出日期:  2012-03-15

/

返回文章
返回
Baidu
map