-
Sulfur in hydrogen combustion reaction chemistry, which plays an important role in meteorology, combustion reactions, and atmospheric pollution, has been extensively investigated recently. And its reverse reaction has also been a research object gradually. The research in this paper is based on the exact potential energy surface (L S J, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 094308), with using the method of quasi-classical trajectory on the exchange reaction of H (D)+SH/SD dynamic properties. In this paper, the scalar properties are calculated, including the cross section, rate constant, opacity function, product vibrational, rotational distributions, product scattering direction, rotational angular momentum orientation, and alignment properties. In this paper, how the collision energy and the isotope affect the reaction H (D)+SH/SD kinetic properties is analyzed in detail. The results show that as collision energy increases, the reaction cross section increases, product backscatter weakens gradually while the product rotational angular momentum alignment and orientation nature strengthen gradually. In addition, the isotope effect has a significant influence on the reaction kinetics. The reaction mechanism which is shown in the title and based on the reaction kinetics and the potential energy surface, is also discussed in this paper.
-
Keywords:
- quasi-classical trajectory /
- reaction cross sections /
- rate constant /
- ro-vibrational distribution
[1] Maiti B, Schatz G C, Lendvay G 2004 J. Chem. Phys. A 108 8772
[2] Kłos J A, Dagdigian P J, Alexander M H 2007 J. Chem. Phys. 127 154321
[3] Lara M, Jambrina P G, Varandas A, Launay J M, Aoiz F J 2011 J. Chem. Phys. 135 134313
[4] Berteloite C, Lara M, Bergeat A, Le Picard S D, Dayou F, Hickson K M, Canosa A, Naulin C, Launay J M, Sims I R, Costes M 2010 Phys. Rev. Lett. 105 203201
[5] Lee S H, Liu K 1998 Chem. Phys. Lett. 290 323
[6] Martin R L 1983 J. Phys. Chem. 87 750
[7] L S J, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 94308
[8] Bai M M, Ge M H, Yang H, Zheng Y J 2012 Chin. Phys. B 21 123401
[9] L S J, Zhang P Y, He G Z 2012 Chin. Phys. Lett. 29 073401
[10] L S J, Zhang P Y, He G Z 2012 Chin. J. Chem. Phys. 25 291
[11] Guo Y H, Zhang F Y, Ma H Z 2013 Commun. Comput. Chem. 1 99
[12] Guo Y H, Zhang F Y, Ma H Z 2013 Chin. Phys. B 22 053402
[13] Li Y M, Sun P 2011 Chem. Phys. 389 116
[14] Braunstein M, Adler Golden S, Maiti B, Schatz G 2004 J. Chem. Phys. 120 4316
[15] Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192
[16] Brando J, Rio C 2007 Mol. Phys. 105 359
[17] Hou C Y, Li Y M 2009 Chem. Phys. 364 64
[18] Jorfi M, Honvault P 2011 Phys. Chem. Chem. Phys. 13 8414
[19] Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 58 6926]
[20] Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese) [夏文泽, 于永江, 杨传路 2012 61 223401]
[21] Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204
[22] Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446
[23] Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[24] Li H, Zheng B, Meng Q T 2012 Acta Phys. Sin. 61 153401 (in Chinese) [李红, 郑斌, 孟庆田 2012 61 153401]
[25] Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201
[26] Chen T Y, Zhang W P, Wang X Q, Zhao G J 2009 Chem. Phys. 365 158
[27] Wang W, Rosa C, Brandao J 2006 Chem. Phys. Lett. 418 250
[28] Varandas A J C, Poveda L 2006 Theor. Chim. Acta 116 404
[29] Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964
[30] Xu Z H, Zong F J 2011 Chin. Phys. B 20 063104
[31] Liu Y F, Liu Y L, Liang B 2012 Chin. Phys. B 21 098201
-
[1] Maiti B, Schatz G C, Lendvay G 2004 J. Chem. Phys. A 108 8772
[2] Kłos J A, Dagdigian P J, Alexander M H 2007 J. Chem. Phys. 127 154321
[3] Lara M, Jambrina P G, Varandas A, Launay J M, Aoiz F J 2011 J. Chem. Phys. 135 134313
[4] Berteloite C, Lara M, Bergeat A, Le Picard S D, Dayou F, Hickson K M, Canosa A, Naulin C, Launay J M, Sims I R, Costes M 2010 Phys. Rev. Lett. 105 203201
[5] Lee S H, Liu K 1998 Chem. Phys. Lett. 290 323
[6] Martin R L 1983 J. Phys. Chem. 87 750
[7] L S J, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 94308
[8] Bai M M, Ge M H, Yang H, Zheng Y J 2012 Chin. Phys. B 21 123401
[9] L S J, Zhang P Y, He G Z 2012 Chin. Phys. Lett. 29 073401
[10] L S J, Zhang P Y, He G Z 2012 Chin. J. Chem. Phys. 25 291
[11] Guo Y H, Zhang F Y, Ma H Z 2013 Commun. Comput. Chem. 1 99
[12] Guo Y H, Zhang F Y, Ma H Z 2013 Chin. Phys. B 22 053402
[13] Li Y M, Sun P 2011 Chem. Phys. 389 116
[14] Braunstein M, Adler Golden S, Maiti B, Schatz G 2004 J. Chem. Phys. 120 4316
[15] Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192
[16] Brando J, Rio C 2007 Mol. Phys. 105 359
[17] Hou C Y, Li Y M 2009 Chem. Phys. 364 64
[18] Jorfi M, Honvault P 2011 Phys. Chem. Chem. Phys. 13 8414
[19] Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 58 6926]
[20] Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese) [夏文泽, 于永江, 杨传路 2012 61 223401]
[21] Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204
[22] Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446
[23] Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[24] Li H, Zheng B, Meng Q T 2012 Acta Phys. Sin. 61 153401 (in Chinese) [李红, 郑斌, 孟庆田 2012 61 153401]
[25] Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201
[26] Chen T Y, Zhang W P, Wang X Q, Zhao G J 2009 Chem. Phys. 365 158
[27] Wang W, Rosa C, Brandao J 2006 Chem. Phys. Lett. 418 250
[28] Varandas A J C, Poveda L 2006 Theor. Chim. Acta 116 404
[29] Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964
[30] Xu Z H, Zong F J 2011 Chin. Phys. B 20 063104
[31] Liu Y F, Liu Y L, Liang B 2012 Chin. Phys. B 21 098201
Catalog
Metrics
- Abstract views: 6034
- PDF Downloads: 385
- Cited By: 0