-
LiB3O5 and CsB3O5 are two excellent nonlinear optical borate crystals containing [B3O7] groups. With a difference of aikali metal ions in structure, LiB3O5 and CsB3O5 exhibit different crystallization habits. The former is an incongruent compound, which cannot crystallize from its melt; however, the latter is a congruent compound obtained by cooling its melt directly. In this work, using Raman spectroscopy and ab initio calculation, the structures of LiB3O5 and CsB3O5 melts have been investigated, and then the influence of alkali metal ions on melt structures is discussed, finally, the relationship between crystallization habits of LiB3O5 and CsB3O5 and their melts is proposed. Results suggest that the boron oxide species of LiB3O5 and CsB3O5 melts are in the form of six-membered rings B3Ø7 and B3Ø6 (Ø represents a bridging oxygen); Raman frequency of the symmetric breathing vibration of six-membered rings shifts to low frequency with the addition of BØ4 tetrahedrons in rings; the relatively large amount of BØ4 tetrahedrons is found in LiB3O5 melts. However, Cs+ ions with larger ion radius hinder the formation of BØ4 tetrahedrons, and then reduc, the BØ4/BØ3 ratio of the melt. Finally, considering the growth mechanism of LiB3O5 and CsB3O5 crystals (Wang D, Wan S M et al. 2011 Cryst. Eng. Comm. 13 5239), we propose that the amount of BØ4 tetrahedrons in melts, which is influenced by aikali metal ions, determines LiB3O5 and CsB3O5 crystallization habits, therefore, and suggest the reduction of BØ4 tetrahedrons in melts is an effective way to crystallize LiB3O5.
-
Keywords:
- borate crystals /
- melt structures /
- Raman spectroscopy /
- crystallization habit
[1] Chen C T 2001 Journal of Synthetic Crystals 30 36 (in Chinese) [陈创天 2001 人工晶体学报 30 36]
[2] Nikogosyan D N 1994 Appl. Phys. A: Solids Surf. 58 181
[3] Wu Y C, Fu P Z, Wang J X, Xu Z Y, Zhang L, Kong Y F, Chen C T 1997 Opt. Lett. 22 1840
[4] Wu Y C 2001 Journal of Synthetic Crystals 30 43 (in Chinese) [吴以成 2001 人工晶体学报 30 43]
[5] Shumov D P, Nenov A T, Nihtianova D D 1996 J. Cryst. Growth 169 519
[6] Kima H G, Kang J K, Lee S H, Chung S J 1998 J. Cryst. Growth 187 455
[7] Parfeniuk C, Samarasekera I V, Weinberg F 1996 J. Cryst. Growth 158 514
[8] Parfeniuk C, Samarasekera I V, Weinberg F, Edel J, Fjeldsted K, Lent B 1996 J. Cryst. Growth 158 523
[9] Wu Y C, Sasaki T, Nakai S, Yokotani A, Tang H, Chen C T 1993 Appl. Phys. Lett. 62 2614
[10] Zhou W P, Wan S M, Yin S T, Zhang Q L, You J L, Wang Y Y 2009 Acta Phys. Sin. 58 570 (in Chinese) [周文平, 万松明, 殷绍唐, 张庆礼, 尤静林, 王媛媛 2009 58 570]
[11] Elwell D, Scheel H J 2011 Crystal Growth from High-Temperature Solutions (Digital Version) (London: Academic Press INC) p16
[12] Wang D, Wan S M, Yin S T, Zhang Q L, You J L, Zhang G C, Fu P Z 2011 Cryst. Eng. Comm. 13 5239
[13] Hou M, You J L, Simon P, Zhang G C, Wan S M, Wang Y Y, Ji Z F, Wang L H, Fu P Z, Wu Y C, Yin S T 2011 Cryst. Eng. Comm. 13 3030
[14] Wan S M, Zhang X, Zhao S J, Zhang Q L, You J L, Lu L, Fu P Z, Wu Y C, Yin S T 2007 Cryst. Growth Des. 8 412
[15] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, Gironcoli S D, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smo-gunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[16] Koenig H, Hoppe R 1978 Z. Anorg. Allg. Chem. 439 71
[17] Zhang G Y, Lan G X, Wang Y F 2001 Lattice Vibration Spectroscopy (Second Edition) (Beijing: Higher Education Press) p79 (in Chinese) [张光寅, 蓝国祥, 王玉芳 2001 晶格振动光谱学 (第2版) (北京: 高等教育出版社) 第79页]
[18] Xiong G S, Lan G X, Wang H F, Huang C E 1993 J. Raman Spectrosc. 24 785
[19] Wang Y F, Liu J J, Hu S F, Lan G X, Fu P Z, Wang Z X 1999 J. Raman Spectrosc. 30 519
[20] Meera B N, Ramakrishna J 1993 J. Non-Cryst. Solids 159 1
[21] Galeener F L, Lucovsky G, Mikkelsen Jr J C 1980 Phys. Rev. B 22 3983
[22] Osipov A A, Osipova L M 2009 Glass Phys. Chem. 35 132
[23] Irikura K K, Johnson R D, Kacker R N 2005 J. Phys. Chem. 109 8430
[24] Chryssikos G D, Kamitsos E I, Karakassides M A 1990 Phys. Chem. Glasses 31 109
[25] Wang D, Zhang J, Zhang D M, Wan S M, Zhang Q L, Sun D L, Yin S T 2013 Cryst. Eng. Comm. 15 356
-
[1] Chen C T 2001 Journal of Synthetic Crystals 30 36 (in Chinese) [陈创天 2001 人工晶体学报 30 36]
[2] Nikogosyan D N 1994 Appl. Phys. A: Solids Surf. 58 181
[3] Wu Y C, Fu P Z, Wang J X, Xu Z Y, Zhang L, Kong Y F, Chen C T 1997 Opt. Lett. 22 1840
[4] Wu Y C 2001 Journal of Synthetic Crystals 30 43 (in Chinese) [吴以成 2001 人工晶体学报 30 43]
[5] Shumov D P, Nenov A T, Nihtianova D D 1996 J. Cryst. Growth 169 519
[6] Kima H G, Kang J K, Lee S H, Chung S J 1998 J. Cryst. Growth 187 455
[7] Parfeniuk C, Samarasekera I V, Weinberg F 1996 J. Cryst. Growth 158 514
[8] Parfeniuk C, Samarasekera I V, Weinberg F, Edel J, Fjeldsted K, Lent B 1996 J. Cryst. Growth 158 523
[9] Wu Y C, Sasaki T, Nakai S, Yokotani A, Tang H, Chen C T 1993 Appl. Phys. Lett. 62 2614
[10] Zhou W P, Wan S M, Yin S T, Zhang Q L, You J L, Wang Y Y 2009 Acta Phys. Sin. 58 570 (in Chinese) [周文平, 万松明, 殷绍唐, 张庆礼, 尤静林, 王媛媛 2009 58 570]
[11] Elwell D, Scheel H J 2011 Crystal Growth from High-Temperature Solutions (Digital Version) (London: Academic Press INC) p16
[12] Wang D, Wan S M, Yin S T, Zhang Q L, You J L, Zhang G C, Fu P Z 2011 Cryst. Eng. Comm. 13 5239
[13] Hou M, You J L, Simon P, Zhang G C, Wan S M, Wang Y Y, Ji Z F, Wang L H, Fu P Z, Wu Y C, Yin S T 2011 Cryst. Eng. Comm. 13 3030
[14] Wan S M, Zhang X, Zhao S J, Zhang Q L, You J L, Lu L, Fu P Z, Wu Y C, Yin S T 2007 Cryst. Growth Des. 8 412
[15] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, Gironcoli S D, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smo-gunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[16] Koenig H, Hoppe R 1978 Z. Anorg. Allg. Chem. 439 71
[17] Zhang G Y, Lan G X, Wang Y F 2001 Lattice Vibration Spectroscopy (Second Edition) (Beijing: Higher Education Press) p79 (in Chinese) [张光寅, 蓝国祥, 王玉芳 2001 晶格振动光谱学 (第2版) (北京: 高等教育出版社) 第79页]
[18] Xiong G S, Lan G X, Wang H F, Huang C E 1993 J. Raman Spectrosc. 24 785
[19] Wang Y F, Liu J J, Hu S F, Lan G X, Fu P Z, Wang Z X 1999 J. Raman Spectrosc. 30 519
[20] Meera B N, Ramakrishna J 1993 J. Non-Cryst. Solids 159 1
[21] Galeener F L, Lucovsky G, Mikkelsen Jr J C 1980 Phys. Rev. B 22 3983
[22] Osipov A A, Osipova L M 2009 Glass Phys. Chem. 35 132
[23] Irikura K K, Johnson R D, Kacker R N 2005 J. Phys. Chem. 109 8430
[24] Chryssikos G D, Kamitsos E I, Karakassides M A 1990 Phys. Chem. Glasses 31 109
[25] Wang D, Zhang J, Zhang D M, Wan S M, Zhang Q L, Sun D L, Yin S T 2013 Cryst. Eng. Comm. 15 356
Catalog
Metrics
- Abstract views: 5782
- PDF Downloads: 298
- Cited By: 0