Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of low-temperature annealing phosphorous gettering process on the electrical properties of multi-crystalline silicon with a low minority carrier lifetime

Jiang Li-Li Lu Zhong-Lin Zhang Feng-Ming Lu Xiong

Citation:

Effects of low-temperature annealing phosphorous gettering process on the electrical properties of multi-crystalline silicon with a low minority carrier lifetime

Jiang Li-Li, Lu Zhong-Lin, Zhang Feng-Ming, Lu Xiong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A new low-temperature annealing phosphorous gettering process (LTAPGP) was developed to improve the electrical properties of multi-crystalline silicon which has a low minority carrier lifetime. LTAPGP combined a multi-plateau temperature phosphorous gettering process and a low-temperature annealing process. LTAPGP can remove the iron impurities and crystallographic defects of multi-crystalline silicon, and improve the electrical properties of silicon solar cells that were produced from low minority carrier lifetime silicon wafers. Compared with multi-plateau and two-plateau temperature phosphorous gettering process, LTAPGP was more effective in gettering iron impurities and repairing crystallographic defects. The multi-crystalline silicon wafers with a low minority carrier lifetime went through an LTAPGP process were utilized to produce solar cells. The IV-measurement data prove that the efficiency of the new solar cells is 0.2% higher than that of specimens subject to the multi-plateau and two-plateau temperature processes. The results indicat that LTAPGP can make the low minority carrier lifetime silicon wafers to be used in solar cell industry, improve the utilization ratio and reduce the production cost of cast polysilicon.
    [1]

    Deng H, Yang D R, Tan J, Xi Z Q, Que D L 2007 Acta Energi. 28 2 (in Chinese) [邓海, 杨德仁, 唐骏, 席珍强, 阙端麟 2005 太阳能学报 28 2]

    [2]

    Shi X B, Xu Z Q, Shi Z R, Zhu T, Wang Y 2006 Journal of Sothern Yangtze University (Natural Science Edition) 5(6) (in Chinese) [石湘波, 许志强, 施正荣, 朱拓 2006 江南大学学报 5 6]

    [3]
    [4]
    [5]

    Min J, Li J H 1995 Research Progress of SSE 15 3 (in Chinese) [闵靖, 陈一, 宗祥福 1995 固体电子学研究与进展 15 3]

    [6]
    [7]

    Ji X B, Zhou Q G, Liu B, Xu J 2009 Chinese J. Rare Metals 32 6 (in Chinese) [籍小兵, 周旗钢, 刘 斌, 徐继平 2009 稀有金属 32 6]

    [8]

    Seidel T, Meek R, Cullis A 1975 J. Appl. Phys. 46 2

    [9]
    [10]
    [11]

    Tan J, Cuevas A, Macdonald D, Trupke T, Bardos R, Roth K 2008 Prog Photovoltaics 16 2

    [12]
    [13]

    Shabani M B, Yamashita T, Morita E. 2008 Solid State Phenom 131

    [14]

    Prichaud I 2002 Sol. Energ. Mat. Sol. C 72 1

    [15]
    [16]

    Khedher N, Hajji M, Hassen M, Ben Jaballah A, Ouertani B, Ezzaouia H, Bessais B, Selmi A, Bennaceur R 2005 Sol. Energ. Mat. Sol. C 87 1

    [17]
    [18]
    [19]

    Chen J X, Xi Z Q, Wu D D, Yang D R 2007 Acta Energi 28 2

    [20]

    Pletzer T, Stegemann E, Windgassen H, Suckow S, Btzner D, Kurz H. 2011 Prog Photovoltaics 19 8

    [21]
    [22]

    Shockley W 1952 Proceedings of the IRE 40 11

    [23]
    [24]
    [25]

    Hall R N 1952 Physical Review 87 2

    [26]
    [27]

    Krain R, Herlufsen S, Schmidt J 2008 Appl. Phys. Lett. 93

    [28]

    Geranzani P, Pagani M, Pello C, Borionetti G 2002 Internal gettering in silicon: experimental and theoretical studies based on fast and slow diffusing metals Scitec Publications; 1999 p381-386

    [29]
    [30]
    [31]

    Istratov A A, Vinl H, Huber W, Weber E R 2005 Semiconductor Science and Tech 20

    [32]

    Istratov A A, Hieslmair H, Weber E 1999 Appl. Phys. A-Mater 69 1

    [33]
    [34]
    [35]

    Istratov A A, Hieslmair H, Weber E 2000 Appl. Phys. A-Mater 70 5

    [36]

    Komatsu Y, Galbiati G, Lamers M, Venema P, Harris M, Stassen A F, Meyer C, van den Donker M, Weeber A 2009 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany., 2009, 1063-1067

    [37]
    [38]

    Komatsu Y, Koorn M, Vlooswijk A H G, Venema P R, Stassen A F 2011 Energy Procedia 8

    [39]
    [40]

    Manshanden P, Geerligs L 2006 Sol. Energ. Mat. Sol. C 90 7

    [41]
    [42]
    [43]

    Nelson J 2003 The physics of solar cells Vol.57 2003: World Scientific.

    [44]
    [45]

    Green M A 1982 Englewood Cliffs, NJ, Prentice-Hall, Inc., 1982. 288 p1

    [46]

    Jha A Solar cell technology and applications 2009: Auerbach Publications

    [47]
  • [1]

    Deng H, Yang D R, Tan J, Xi Z Q, Que D L 2007 Acta Energi. 28 2 (in Chinese) [邓海, 杨德仁, 唐骏, 席珍强, 阙端麟 2005 太阳能学报 28 2]

    [2]

    Shi X B, Xu Z Q, Shi Z R, Zhu T, Wang Y 2006 Journal of Sothern Yangtze University (Natural Science Edition) 5(6) (in Chinese) [石湘波, 许志强, 施正荣, 朱拓 2006 江南大学学报 5 6]

    [3]
    [4]
    [5]

    Min J, Li J H 1995 Research Progress of SSE 15 3 (in Chinese) [闵靖, 陈一, 宗祥福 1995 固体电子学研究与进展 15 3]

    [6]
    [7]

    Ji X B, Zhou Q G, Liu B, Xu J 2009 Chinese J. Rare Metals 32 6 (in Chinese) [籍小兵, 周旗钢, 刘 斌, 徐继平 2009 稀有金属 32 6]

    [8]

    Seidel T, Meek R, Cullis A 1975 J. Appl. Phys. 46 2

    [9]
    [10]
    [11]

    Tan J, Cuevas A, Macdonald D, Trupke T, Bardos R, Roth K 2008 Prog Photovoltaics 16 2

    [12]
    [13]

    Shabani M B, Yamashita T, Morita E. 2008 Solid State Phenom 131

    [14]

    Prichaud I 2002 Sol. Energ. Mat. Sol. C 72 1

    [15]
    [16]

    Khedher N, Hajji M, Hassen M, Ben Jaballah A, Ouertani B, Ezzaouia H, Bessais B, Selmi A, Bennaceur R 2005 Sol. Energ. Mat. Sol. C 87 1

    [17]
    [18]
    [19]

    Chen J X, Xi Z Q, Wu D D, Yang D R 2007 Acta Energi 28 2

    [20]

    Pletzer T, Stegemann E, Windgassen H, Suckow S, Btzner D, Kurz H. 2011 Prog Photovoltaics 19 8

    [21]
    [22]

    Shockley W 1952 Proceedings of the IRE 40 11

    [23]
    [24]
    [25]

    Hall R N 1952 Physical Review 87 2

    [26]
    [27]

    Krain R, Herlufsen S, Schmidt J 2008 Appl. Phys. Lett. 93

    [28]

    Geranzani P, Pagani M, Pello C, Borionetti G 2002 Internal gettering in silicon: experimental and theoretical studies based on fast and slow diffusing metals Scitec Publications; 1999 p381-386

    [29]
    [30]
    [31]

    Istratov A A, Vinl H, Huber W, Weber E R 2005 Semiconductor Science and Tech 20

    [32]

    Istratov A A, Hieslmair H, Weber E 1999 Appl. Phys. A-Mater 69 1

    [33]
    [34]
    [35]

    Istratov A A, Hieslmair H, Weber E 2000 Appl. Phys. A-Mater 70 5

    [36]

    Komatsu Y, Galbiati G, Lamers M, Venema P, Harris M, Stassen A F, Meyer C, van den Donker M, Weeber A 2009 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany., 2009, 1063-1067

    [37]
    [38]

    Komatsu Y, Koorn M, Vlooswijk A H G, Venema P R, Stassen A F 2011 Energy Procedia 8

    [39]
    [40]

    Manshanden P, Geerligs L 2006 Sol. Energ. Mat. Sol. C 90 7

    [41]
    [42]
    [43]

    Nelson J 2003 The physics of solar cells Vol.57 2003: World Scientific.

    [44]
    [45]

    Green M A 1982 Englewood Cliffs, NJ, Prentice-Hall, Inc., 1982. 288 p1

    [46]

    Jha A Solar cell technology and applications 2009: Auerbach Publications

    [47]
  • [1] Ren Cheng-Chao, Zhou Jia-Kai, Zhang Bo-Yu, Liu Zhang, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts. Acta Physica Sinica, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [2] Xiao You-Peng, Wang Tao, Wei Xiu-Qin, Zhou Lang. Physical mechanism and optimal design of silicon heterojunction solar cells. Acta Physica Sinica, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [3] Geng Chao, Zheng Yi, Zhang Yong-Zhe, Yan Hui. Optical design of nanowire array on silicon thin film solar cell. Acta Physica Sinica, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [4] Yao Xin, Ding Yan-Li, Zhang Xiao-Dan, Zhao Ying. A review of the perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [5] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [6] Wang Jian-Qiang, Liu Bang-Wu, Xia Yang, Xu Zheng. Simulation on reflection plate angles of the efficient black silicon PV modules. Acta Physica Sinica, 2014, 63(1): 018802. doi: 10.7498/aps.63.018802
    [7] Zeng Xiang-An, Ai Bin, Deng You-Jun, Shen Hui. Study on light-induced degradation of silicon wafers and solar cells. Acta Physica Sinica, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [8] Jia Xiao-Jie, Ai Bin, Xu Xin-Xiang, Yang Jiang-Hai, Deng You-Jun, Shen Hui. Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell. Acta Physica Sinica, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [9] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [10] Cao Yu, Zhang Jian-Jun, Li Tian-Wei, Huang Zhen-Hua, Ma Jun, Ni Jian, Geng Xin-Hua, Zhao Ying. Optimization of the longitudinal structure of intrinsic layer in microcrystalline silicon germanium solar cell. Acta Physica Sinica, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [11] Han An-Jun, Sun Yun, Li Zhi-Guo, Li Bo-Yan, He Jing-Jing, Zhang Yi, Liu Wei. The high efficiency sub-micrometer Cu(In, Ga)Se2 solar cell prepared on low temperature. Acta Physica Sinica, 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [12] Zhou Chun-Lan, Li Xu-Dong, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Cao Xiao-Ning. The effect of oxidation randomly textured up-pyramid on the silicon solar cell. Acta Physica Sinica, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [13] Fang Xin, Shen Wen-Zhong. Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency. Acta Physica Sinica, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [14] Jia Ming, Tian Zhong-Liang, Lai Yan-Qing, Li Jie, Yi Ji-Guang, Yan Jian-Feng, Liu Ye-Xiang. Study on the removal of impurities in silicon by electrorefining. Acta Physica Sinica, 2010, 59(3): 1938-1945. doi: 10.7498/aps.59.1938
    [15] Cai Hong-Kun, Tao Ke, Wang Lin-Shen, Zhao Jing-Fang, Sui Yan-Ping, Zhang De-Xian. Interface treatment of amorphous silicon thin film solar cells on flexible substrate. Acta Physica Sinica, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [16] Xi Guang-Ping, Ma Xiang-Yang, Tian Da-Xi, Zeng Yu-Heng, Gong Long-Fei, Yang De-Ren. Effects of low-temperature annealing on oxygen precipitate nucleation in heavily arsenic-doped Czochralski silicon. Acta Physica Sinica, 2008, 57(11): 7108-7113. doi: 10.7498/aps.57.7108
    [17] Huang Jian-Guo, Han Jian-Wei, Li Hong-Wei, Cai Ming-Hui, Li Xiao-Yin. Investigation on the surface damage to solar cells by impacts of space micro-debris on low earth orbit. Acta Physica Sinica, 2008, 57(12): 7950-7954. doi: 10.7498/aps.57.7950
    [18] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Shi Cheng-Wu, Kong Fan-Tai, Hu Lin-Hua, Pan Xu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [19] Hu Zhi-Hua, Liao Xian-Bo, Diao Hong-Wei, Xia Chao-Feng, Xu Ling, Zeng Xiang-Bo, Hao Hui-Ying, Kong Guang-Lin. AMPS modeling of light J-V characteristics of a-Si based solar cells. Acta Physica Sinica, 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
    [20] Hu Zhi-Hua, Liao Xian-Bo, Zeng Xiang-Bo, Xu Yan-Yue, Zhang Shi-Bin, Diao Hong-Wei, Kong Guang-Lin. Numerical simulation of nc-Si:H/ c-Si heterojunction solar cells. Acta Physica Sinica, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
Metrics
  • Abstract views:  6870
  • PDF Downloads:  1568
  • Cited By: 0
Publishing process
  • Received Date:  08 September 2012
  • Accepted Date:  10 December 2012
  • Published Online:  05 June 2013

/

返回文章
返回
Baidu
map