Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery

Li Juan Ru Qiang Sun Da-Wei Zhang Bei-Bei Hu She-Jun Hou Xian-Hua

Citation:

The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery

Li Juan, Ru Qiang, Sun Da-Wei, Zhang Bei-Bei, Hu She-Jun, Hou Xian-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • SnSb/MCMB composite material was prepared by multi-step synthesis methods. Mesocarbon Microbeads (MCMB) powders were modified by acid treatment firstly, and then SnSb nano particles were deposited on the surface of MCMB through chemical reduction method forming a core-shell composite structure. To characterize the phase and morphology of the composites material, X-ray diffraction (XRD), scanning electron microscope (SEM) were used. The constant current charge and discharge (CD) and cyclic volt ampere (CV) methods were also used to test the electrochemical performance of SnSb/MCMB. The results demonstrated that SnSb/MCMB presents a multiphase system of nanocrystalline and amorphous structure. The capacity attenuation of SnSb alloy is faster than that of SnSb/MCMB. For the SnSb/MCMB composite, the tiny alloy particles were dispersed on the surface of MCMB powders, preventing from the serious agglomeration of nano particles. At the same time, the inner core MCMB can also buffering the volume effect of the alloy compoites to improve the elecrtochemical cycling stability. The composite material was a first discharge specific capacity of 936.161 mAh/g and the first Coulomb efficiency 80.3%. The specific capacity was still up to 498.221 mAh/g after 50 cycles.
    • Funds: Project supported by the National Natural Science Foundation of China (Grat No. 51101062), Science and Technology Project of Guangzhou City (Grat No. 2011J4100075), and the Foundation for Distinguished Young Talents in Higher Education of Guangdong (Grat No. LYM09052).
    [1]

    Scrosati B 1995 Nature 373 557

    [2]

    Datta M K, Kumta P N 2007 J. Power Sources 165 368

    [3]

    Cakan R D, Titirici M M, Antonietti M, Cui G L, Maier J, Hu Y S 2008 Chem. Commun. 32 3759

    [4]

    Jo Y N, Kim Y, Kim J S, Song J H, Kim K J, Kwag C Y, Lee D J, Park C W, Kim Y J 2010 J. Power Sources 195 6031

    [5]

    Chen J S, Li C M, Zhou W W, Yan Q Y, Archer L A, Lou X W 2009 Nanoscale 1 280

    [6]

    Paek S M, Kang J H, Jung H, Hwang S J, Choy J H 2009 Chem. Commun. 48 7536

    [7]

    Fang X P, Lu X, Guo X W, Mao Y, Hu Y S, Wang J Z, Wang Z X, Wu F, Liu H K, Chen L Q 2010 Electrochem. Commun. 12 1520

    [8]

    Zhao H L, Zhu Z M, Yin C L, Guo H, Wu H L 2008 Mater. Chem. Phys. 110 201

    [9]

    Morcrette M, Larcher D, Tarascon J M, Edström K, Vaughey J T, Thackeray M M 2007 Electrochim. Acta 52 5339

    [10]

    Nuli Y N, Yang J, Jiang M S 2008 Mater. Lett. 62 2092

    [11]

    Wang X Y, Wen Z Y, Yang X L, Lin B 2008 Solid State Ionics 179 1238

    [12]

    Wang F, Zhao M S, Song X P 2008 J. Power Sources 175 558

    [13]

    Mukaibo H, Momma T, Osaka T 2005 J. Power Sources 146 457

    [14]

    Yang C G, Zhang D W, Zhao Y B, Lu Y H, Wang L, Goodenough J B 2011 J. Power Sources 196 10673

    [15]

    Simonin L, Lafont U, Kelder E M 2008 J. Power Sources 180 859

    [16]

    Zhang S C, Xing Y L, Jiang T, Du Z J, Li F, He L, Liu W B 2011 J. Power Sources 196 6915

    [17]

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 693 (in Chinese) [侯贤华, 余洪文, 胡社军 2010 59 693]

    [18]

    Wachtler M, Winter M, Besenhard J O 2002 J. Power Sources 105 151

    [19]

    Li H, Shi L H, Lu W, Huang X J, Chen L Q 2001 J. Electrochem. Soc. 148 A915

    [20]

    Marcinek M, Hardwick L J, Richardson T J, Song X, Kostecki R 2007 J. Power Sources 173 965

    [21]

    Liu Y, Xie J Y, Yang J 2003 J. Power Sources 119-121 572

    [22]

    Dailly A, Ghanbaja J, Willmann P, Billaud D 2004 J. Power Sources 136 281

    [23]

    Wu X D, Wang Z X, Chen L Q, Huang X J 2004 Carbon 42 1965

    [24]

    Li H, Wang Q, Shi L H, Chen L Q, Huang X J 2002 Chem. Mater. 14 103

    [25]

    Buiel E, Dahn J R 1999 Electrochim. Acta 45 121

    [26]

    Sun H, Pu W H, He X M, Li J J, Jiang C Y, Wan C R 2005 New Chemical Materials 33 7 (in Chinese) [孙颢, 蒲薇华, 何向明, 李建军, 姜长印, 万春荣 2005 化工新型材料 33 7]

    [27]

    Ein-Eli Y, Koch V R 1997 J. Electrochem. Soc. 144 2968

    [28]

    Liu Z L, Yu A S, Lee J Y 1999 J. Power Sources 81-82 187

    [29]

    Kim J S, Park Y T 2000 J. Power Sources 91 172

    [30]

    Kim J S, Yoon W Y, Yoo K S, Park G S, Lee C W, Murakami Y, Shindo D 2002 J. Power Sources 104 175

    [31]

    Han P X, Yue Y H, Zhang L X, Xu H X, Liu Z H, Zhang K J, Zhang C J, Dong S M, Ma W, Cui G L 2012 Carbon 50 1355

    [32]

    Balan L, Schneider R, Billaud D, Lambert J, Ghanbaja J 2005 Mater. Lett. 59 2898

    [33]

    Trifonova A, Wachtler M, Wagner M R, Schroettner H, Mitterbauer Ch, Hofer F, Möller K C, Winter M, Besenhard J O 2004 Solid State Ionics 168 51

    [34]

    Hassoun J, Derrien G, Panero S, Scrosati B 2009 Electrochim. Acta 54 4441

    [35]

    Huang K L, Zhang G, Liu S Q, Yang S 2006 Chinese J. Inorg. Chem. 22 2075(in Chinese) [黄可龙, 张戈, 刘素琴, 杨赛 2006 无机化学学报 22 2075]

    [36]

    Wolfenstine J, Campos S, Foster D, Read J, Behl W K 2002 J. Power Sources 109 230

    [37]

    Wu Y P, Jiang C, Wan C, Holze R 2002 J. Power Sources 111 329

    [38]

    Ru Q, Tian Q, Hu S J, Zhao L Z 2011 Int. J. Miner. Metall. Mater. 18 216

    [39]

    Mao O, Dunlap R A, Dahn J R 1999 J. Electrochem. Soc. 146 405

    [40]

    Derrien G, Hassoun J, Panero S, Scrosati B 2007 Adv. Mater. 19 2336

    [41]

    Hassoun J, Derrien G, Panero S, Scrosati B 2008 Adv. Mater. 20 3169

  • [1]

    Scrosati B 1995 Nature 373 557

    [2]

    Datta M K, Kumta P N 2007 J. Power Sources 165 368

    [3]

    Cakan R D, Titirici M M, Antonietti M, Cui G L, Maier J, Hu Y S 2008 Chem. Commun. 32 3759

    [4]

    Jo Y N, Kim Y, Kim J S, Song J H, Kim K J, Kwag C Y, Lee D J, Park C W, Kim Y J 2010 J. Power Sources 195 6031

    [5]

    Chen J S, Li C M, Zhou W W, Yan Q Y, Archer L A, Lou X W 2009 Nanoscale 1 280

    [6]

    Paek S M, Kang J H, Jung H, Hwang S J, Choy J H 2009 Chem. Commun. 48 7536

    [7]

    Fang X P, Lu X, Guo X W, Mao Y, Hu Y S, Wang J Z, Wang Z X, Wu F, Liu H K, Chen L Q 2010 Electrochem. Commun. 12 1520

    [8]

    Zhao H L, Zhu Z M, Yin C L, Guo H, Wu H L 2008 Mater. Chem. Phys. 110 201

    [9]

    Morcrette M, Larcher D, Tarascon J M, Edström K, Vaughey J T, Thackeray M M 2007 Electrochim. Acta 52 5339

    [10]

    Nuli Y N, Yang J, Jiang M S 2008 Mater. Lett. 62 2092

    [11]

    Wang X Y, Wen Z Y, Yang X L, Lin B 2008 Solid State Ionics 179 1238

    [12]

    Wang F, Zhao M S, Song X P 2008 J. Power Sources 175 558

    [13]

    Mukaibo H, Momma T, Osaka T 2005 J. Power Sources 146 457

    [14]

    Yang C G, Zhang D W, Zhao Y B, Lu Y H, Wang L, Goodenough J B 2011 J. Power Sources 196 10673

    [15]

    Simonin L, Lafont U, Kelder E M 2008 J. Power Sources 180 859

    [16]

    Zhang S C, Xing Y L, Jiang T, Du Z J, Li F, He L, Liu W B 2011 J. Power Sources 196 6915

    [17]

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 693 (in Chinese) [侯贤华, 余洪文, 胡社军 2010 59 693]

    [18]

    Wachtler M, Winter M, Besenhard J O 2002 J. Power Sources 105 151

    [19]

    Li H, Shi L H, Lu W, Huang X J, Chen L Q 2001 J. Electrochem. Soc. 148 A915

    [20]

    Marcinek M, Hardwick L J, Richardson T J, Song X, Kostecki R 2007 J. Power Sources 173 965

    [21]

    Liu Y, Xie J Y, Yang J 2003 J. Power Sources 119-121 572

    [22]

    Dailly A, Ghanbaja J, Willmann P, Billaud D 2004 J. Power Sources 136 281

    [23]

    Wu X D, Wang Z X, Chen L Q, Huang X J 2004 Carbon 42 1965

    [24]

    Li H, Wang Q, Shi L H, Chen L Q, Huang X J 2002 Chem. Mater. 14 103

    [25]

    Buiel E, Dahn J R 1999 Electrochim. Acta 45 121

    [26]

    Sun H, Pu W H, He X M, Li J J, Jiang C Y, Wan C R 2005 New Chemical Materials 33 7 (in Chinese) [孙颢, 蒲薇华, 何向明, 李建军, 姜长印, 万春荣 2005 化工新型材料 33 7]

    [27]

    Ein-Eli Y, Koch V R 1997 J. Electrochem. Soc. 144 2968

    [28]

    Liu Z L, Yu A S, Lee J Y 1999 J. Power Sources 81-82 187

    [29]

    Kim J S, Park Y T 2000 J. Power Sources 91 172

    [30]

    Kim J S, Yoon W Y, Yoo K S, Park G S, Lee C W, Murakami Y, Shindo D 2002 J. Power Sources 104 175

    [31]

    Han P X, Yue Y H, Zhang L X, Xu H X, Liu Z H, Zhang K J, Zhang C J, Dong S M, Ma W, Cui G L 2012 Carbon 50 1355

    [32]

    Balan L, Schneider R, Billaud D, Lambert J, Ghanbaja J 2005 Mater. Lett. 59 2898

    [33]

    Trifonova A, Wachtler M, Wagner M R, Schroettner H, Mitterbauer Ch, Hofer F, Möller K C, Winter M, Besenhard J O 2004 Solid State Ionics 168 51

    [34]

    Hassoun J, Derrien G, Panero S, Scrosati B 2009 Electrochim. Acta 54 4441

    [35]

    Huang K L, Zhang G, Liu S Q, Yang S 2006 Chinese J. Inorg. Chem. 22 2075(in Chinese) [黄可龙, 张戈, 刘素琴, 杨赛 2006 无机化学学报 22 2075]

    [36]

    Wolfenstine J, Campos S, Foster D, Read J, Behl W K 2002 J. Power Sources 109 230

    [37]

    Wu Y P, Jiang C, Wan C, Holze R 2002 J. Power Sources 111 329

    [38]

    Ru Q, Tian Q, Hu S J, Zhao L Z 2011 Int. J. Miner. Metall. Mater. 18 216

    [39]

    Mao O, Dunlap R A, Dahn J R 1999 J. Electrochem. Soc. 146 405

    [40]

    Derrien G, Hassoun J, Panero S, Scrosati B 2007 Adv. Mater. 19 2336

    [41]

    Hassoun J, Derrien G, Panero S, Scrosati B 2008 Adv. Mater. 20 3169

  • [1] Li Xiao-Jie, Yu Yun-Tai, Zhang Zhi-Wen, Dong Xiao-Rui. External characteristics of lithium-ion power battery based on electrochemical aging decay model. Acta Physica Sinica, 2022, 71(3): 038803. doi: 10.7498/aps.71.20211401
    [2] Xie Yi-Zhan, Cheng Xi-Ming. A new method to solve electrolyte diffusion equations for single particle model of lithium-ion batteries. Acta Physica Sinica, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [3] A New Method to Solve the Electrolyte Diffusion Equations of Single Particle Model for Lithium-ion Batteries. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211619
    [4] Li Tao, Cheng Xi-Ming, Hu Chen-Hua. Comparative study of reduced-order electrochemical models of the lithium-ion battery. Acta Physica Sinica, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [5] Zhang Yong-Quan, Yao An-Quan, Yang Liu, Zhu Kai, Cao Dian-Xue. Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries. Acta Physica Sinica, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [6] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [7] Zeng Jian-Bang,  Guo Xue-Ying,  Liu Li-Chao,  Shen Zu-Ying,  Shan Feng-Wu,  Luo Yu-Feng. Mechanism of influence of separator microstructure on performance of lithium-ion battery based on electrochemical-thermal coupling model. Acta Physica Sinica, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [8] Jiang Mei-Yan, Zhu Zheng-Jie, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Microstructural and electrochemical properties of sulfur ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [9] Wang Gui-Qiang,  Liu Jie-Qiong,  Dong Wei-Nan,  Yan Chao,  Zhang Wei. Nitrogen/sulfur co-doped porous carbon nanosheets and its electrochemical performance. Acta Physica Sinica, 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [10] Pang Hui. Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model. Acta Physica Sinica, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [11] Yang Xiu-Tao, Liang Zhong-Guan, Yuan Yu-Jia, Yang Jun-Liang, Xia Hui. Preparation and electrochemical performance of porous carbon nanosphere. Acta Physica Sinica, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [12] Wang Rui, Hu Xiao-Jun. The microstructural and electrochemical properties of oxygen ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [13] Chen Chang, Ru Qiang, Hu She-Jun, An Bo-Nan, Song Xiong. Preparation and electrochemical properties of Co2SnO4/graphene composites. Acta Physica Sinica, 2014, 63(19): 198201. doi: 10.7498/aps.63.198201
    [14] Li Juan, Ru Qiang, Hu She-Jun, Guo Ling-Yun. Lithium intercalation properties of SnSb/C composite in carbonthermal reduction as the anode material for lithium ion battery. Acta Physica Sinica, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [15] Huang Le-Xu, Chen Yuan-Fu, Li Ping-Jian, Huan Ran, He Jia-Rui, Wang Ze-Gao, Hao Xin, Liu Jing-Bo, Zhang Wan-Li, Li Yan-Rong. Effects of preparation temperature of graphite oxide on the structure of graphite and electrochemical properties of graphene-based lithium-ion batteries. Acta Physica Sinica, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [16] Yue Min, Hu She-Jun, Hou Xian-Hua, Liang Qi, Peng Wei. Preparation and characterization of positive materials LiMn1-xFexPO4(0x<1) for lithium ion batteries. Acta Physica Sinica, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [17] Bai Ying, Wang Bei, Zhang Wei-Feng. Nano-LiNiO2 as cathode material for lithium ion battery synthesized by molten salt method. Acta Physica Sinica, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] Bai Ying, Ding Ling-Hong, Zhang Wei-Feng. Investigation of electrochemical performances of ZnFe2O4 prepared by solid state and hydrothermal method. Acta Physica Sinica, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [19] Hou Xian-Hua, Yu Hong-Wen, Hu She-Jun. preparation and properties of Sn-Al thin-film electrode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [20] Hou Xian-Hua, Hu She-Jun, Shi Lu. Preparation and properties of Sn-Ti alloy anode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
Metrics
  • Abstract views:  8006
  • PDF Downloads:  10250
  • Cited By: 0
Publishing process
  • Received Date:  24 October 2012
  • Accepted Date:  10 January 2013
  • Published Online:  05 May 2013

/

返回文章
返回
Baidu
map