Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues

Xu Ying-Ying Kan Yu-He Wu Jie Tao Wei Su Zhong-Min

Citation:

Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues

Xu Ying-Ying, Kan Yu-He, Wu Jie, Tao Wei, Su Zhong-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Density functional theory (DFT) is used in a series of hexacene nanoring ([6]CA), its boron nitride analogue ([6]CA-BN) and lithium ion doping derivatives to obtain an insight into electronic structure, aromaticity property, energy gap, ionization potential, electron affinity and reorganization energy. DFT calculations of these nanorings indicate that the energy gaps of the carbon nanorings are smaller than those of the boron nitride nanorings. The lithium ion doping will remarkably reduce the HOMO and LUMO energy. The aromaticities of the rings are investigated though nucleus-independent chemical shift (NICS) values. The NICS scan suggests that the aromaticities of carbon nanoring systems are more than those of boron nitride analogues, the aromaticities of boron nitride compounds are very weak due to orbital localization. We also calculate the reorganization energy to investigate the charge transport properties. The results show that the carbon nanoring and their analogues could serve as bipolar carrier transport materials in photoelectric functional materials, and the lithium ion doping significantly improves the charge transport properties. The [6]CA-BN nanorings serve as better electron-transport materials. Furthermore, the lithium ion doping significantly affects the charge transfer property of [6]CA-BN nanoring, making it used as bipolar carrier transport materials. The time dependant DFT investigations show that the boron nitride substitution leads to an important change in absorption spectrum with blue-shift. And lithium ion doping has no obvious influence on absorption spectrum.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2009CB623605), the National Natural Science Foundation of China (Grant No. 21273030), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011408), the Opening Project of Key Laboratory for Chemistry of Low-Dimensional Materials of Jiangsu Province, China (Grant No. JSKC12109), and the Cultivation Fund of the Key Scientific Innovation Project of Huaiyin Normal University, China (Grant No. 11HSGJBZ11).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R 2011 J. Mater. Chem. 21 15872

    [3]

    Omachi H, Segawa Y, Itami K 2012 Acc. Chem. Res. 45 1378

    [4]

    Kawase T, Kurata H 2006 Chem. Rev. 106 5250

    [5]

    Scott L T 2003 Angew. Chem. Int. Ed. 42 4133

    [6]

    Eisenberg D, Shenhar R, Rabinovitz M 2010 Chem. Soc. Rev. 39 2879

    [7]

    Marsden J A, Miller J J, Shirtcliff L D, Haley M M 2005 J. Am. Chem. Soc. 127 2464

    [8]

    Zhao T, Liu Z, Song Y, Xu W, Zhang D, Zhu D 2006 J. Org. Chem. 71 7422

    [9]

    Xu H L, Zhong R L, Yan L K, Su Z M 2012 J. Phys. Org. Chem. 25 176

    [10]

    Jasti R, Bertozzi C R 2010 Chem. Phys. Lett. 494 1

    [11]

    Bunz U H F, Menning S, Martin N 2012 Angew. Chem. Int. Ed. 51 7094

    [12]

    Dai H J 2002 Acc. Chem. Res. 35 1035

    [13]

    Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A 1995 Science 269 966

    [14]

    Golberg D, Bando Y, Eremets M, Takemura K, Kurashima K, Yusa H 1996 Appl. Phys. Lett. 69 2045

    [15]

    Han W Q, Bando Y, Kurashima K, Sato T 1998 Appl. Phys. Lett. 73 3085

    [16]

    Golberg D, Bando Y, Han W, Kurashima K, Sato T 1999 Chem. Phys. Lett. 308 337

    [17]

    Golberg D, Bando Y, Kurashima K, Sato T 2000 Chem. Phys. Lett. 323 185

    [18]

    Ma R, Bando Y, Sato T 2001 Chem. Phys. Lett. 337 61

    [19]

    Loh K P, Yang S W, Soon J M, Zhang H, Wu P 2003 J. Phys. Chem. A 107 5555

    [20]

    Jia J F, Wu H S 2006 Acta Phys. Chim. Sin. 22 1520 (in Chinese) [贾建峰, 武海顺 2006 物理化学学报 22 1520]

    [21]

    Sun W G, Liu X Y, Wang C Y, Tang Y J, Wu W D, Zhang H Q, Liu M, Yuan L, Xu J J 2009 Acta Phys. Sin. 58 1126 (in Chinese) [孙卫国, 刘秀英, 王朝阳, 唐永建, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖 2009 58 1131]

    [22]

    Jia J F, Wu H S, Jiao H J 2004 Acta Chim. Sin. 62 1385 (in Chinese) [贾建峰, 武海顺, 焦海军 2004 化学学报 62 1385]

    [23]

    Gleiter R, Esser B, Kornmayer S C 2009 Acc. Chem. Res. 42 1108

    [24]

    Jasti R, Bhattacharjee J, Neaton J B, Bertozzi C R 2008 J. Am. Chem. Soc. 130 17646

    [25]

    Steinberg B D, Scott L T 2009 Angew. Chem. Int. Ed. 48 5400

    [26]

    Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K 2009 Angew. Chem. Int. Ed. 48 6112

    [27]

    Omachi H, Matsuura S, Segawa Y, Itami K 2010 Angew. Chem. Int. Ed. 49 10202

    [28]

    Yamago S, Watanabe Y, Iwamoto T 2010 Angew. Chem. Int. Ed. 49 757

    [29]

    Sisto T J, Golder M R, Hirst E S, Jasti R 2011 J. Am. Chem. Soc. 133 15800

    [30]

    Ishii Y, Nakanishi Y, Omachi H, Matsuura S, Matsui K, Shinohara H, Segawa Y, Itami K 2012 Chem. Sci. 3 2340

    [31]

    Xia J, Jasti R 2012 Angew. Chem. Int. Ed. 51 2474

    [32]

    Segawa Y, Miyamoto S, Omachi H, Matsuura S, Šenel P, Sasamori T, Tokitoh N, Itami K 2011 Angew. Chem. Int. Ed. 50 3244

    [33]

    Jasti R, Sisto T 2012 Synlett. 23 483

    [34]

    Chen Z, Jiang D E, Lu X, Bettinger H F, Dai S, Schleyer P V, Houk K N 2007 Org. Lett. 9 5449

    [35]

    Choi H S, Kim K S 1999 Angew. Chem. Int. Ed. 38 2256

    [36]

    Chen Y K, Liu L V, Tian W Q, Wang Y A 2011 J. Phys. Chem. C 115 9306

    [37]

    Wang X, Liew K M 2012 J. Phys. Chem. C 116 1702

    [38]

    Wang C, Wang L G, Zhang H Y, Terence K S W 2010 Acta Phys. Sin. 59 536 (in Chinese) [王畅, 王利光, 张鸿宇, Terence K S W 2010 59 536]

    [39]

    Yang C, Zhang B X, Feng Y F, Yu Y 2009 Acta Phys. Sin. 58 4066 (in Chinese) [杨春, 张变霞, 冯玉芳, 余毅 2009 58 4066]

    [40]

    Baibarac M, Lira Cantú M, Oró Solé J, Casañ Pastor N, Gomez Romero P 2006 Small 2 1075

    [41]

    Liu Y Q 2010 Organic Nano and Molecular Devices (Beijing:Science Publishing House) p101 (in Chinese) [刘云圻2010 有机纳米与分子器件(北京:科学出版社) 第101页]

    [42]

    Schleyer P V, Maerker C, Dransfeld A, Jiao H J, Hommes N 1996 J. Am. Chem. Soc. 118 6317

    [43]

    Martin R L 2003 J. Chem. Phys. 118 4775

    [44]

    Tretiak S, Mukamel S 2002 Chem. Rev. 102 3171

    [45]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Revision A.02 Gaussian, Inc. Wallingford CT)

    [46]

    Zhao Y, Truhlar D G 2008 Acc. Chem. Res. 41 157

    [47]

    Scholes G D, Tretiak S, McDonald T J, Metzger W K, Engtrakul C, Rumbles G, Heben M J 2007 J. Phys. Chem. C 111 11139

    [48]

    Wong B M 2009 J. Phys. Chem. C 113 21921

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R 2011 J. Mater. Chem. 21 15872

    [3]

    Omachi H, Segawa Y, Itami K 2012 Acc. Chem. Res. 45 1378

    [4]

    Kawase T, Kurata H 2006 Chem. Rev. 106 5250

    [5]

    Scott L T 2003 Angew. Chem. Int. Ed. 42 4133

    [6]

    Eisenberg D, Shenhar R, Rabinovitz M 2010 Chem. Soc. Rev. 39 2879

    [7]

    Marsden J A, Miller J J, Shirtcliff L D, Haley M M 2005 J. Am. Chem. Soc. 127 2464

    [8]

    Zhao T, Liu Z, Song Y, Xu W, Zhang D, Zhu D 2006 J. Org. Chem. 71 7422

    [9]

    Xu H L, Zhong R L, Yan L K, Su Z M 2012 J. Phys. Org. Chem. 25 176

    [10]

    Jasti R, Bertozzi C R 2010 Chem. Phys. Lett. 494 1

    [11]

    Bunz U H F, Menning S, Martin N 2012 Angew. Chem. Int. Ed. 51 7094

    [12]

    Dai H J 2002 Acc. Chem. Res. 35 1035

    [13]

    Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A 1995 Science 269 966

    [14]

    Golberg D, Bando Y, Eremets M, Takemura K, Kurashima K, Yusa H 1996 Appl. Phys. Lett. 69 2045

    [15]

    Han W Q, Bando Y, Kurashima K, Sato T 1998 Appl. Phys. Lett. 73 3085

    [16]

    Golberg D, Bando Y, Han W, Kurashima K, Sato T 1999 Chem. Phys. Lett. 308 337

    [17]

    Golberg D, Bando Y, Kurashima K, Sato T 2000 Chem. Phys. Lett. 323 185

    [18]

    Ma R, Bando Y, Sato T 2001 Chem. Phys. Lett. 337 61

    [19]

    Loh K P, Yang S W, Soon J M, Zhang H, Wu P 2003 J. Phys. Chem. A 107 5555

    [20]

    Jia J F, Wu H S 2006 Acta Phys. Chim. Sin. 22 1520 (in Chinese) [贾建峰, 武海顺 2006 物理化学学报 22 1520]

    [21]

    Sun W G, Liu X Y, Wang C Y, Tang Y J, Wu W D, Zhang H Q, Liu M, Yuan L, Xu J J 2009 Acta Phys. Sin. 58 1126 (in Chinese) [孙卫国, 刘秀英, 王朝阳, 唐永建, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖 2009 58 1131]

    [22]

    Jia J F, Wu H S, Jiao H J 2004 Acta Chim. Sin. 62 1385 (in Chinese) [贾建峰, 武海顺, 焦海军 2004 化学学报 62 1385]

    [23]

    Gleiter R, Esser B, Kornmayer S C 2009 Acc. Chem. Res. 42 1108

    [24]

    Jasti R, Bhattacharjee J, Neaton J B, Bertozzi C R 2008 J. Am. Chem. Soc. 130 17646

    [25]

    Steinberg B D, Scott L T 2009 Angew. Chem. Int. Ed. 48 5400

    [26]

    Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K 2009 Angew. Chem. Int. Ed. 48 6112

    [27]

    Omachi H, Matsuura S, Segawa Y, Itami K 2010 Angew. Chem. Int. Ed. 49 10202

    [28]

    Yamago S, Watanabe Y, Iwamoto T 2010 Angew. Chem. Int. Ed. 49 757

    [29]

    Sisto T J, Golder M R, Hirst E S, Jasti R 2011 J. Am. Chem. Soc. 133 15800

    [30]

    Ishii Y, Nakanishi Y, Omachi H, Matsuura S, Matsui K, Shinohara H, Segawa Y, Itami K 2012 Chem. Sci. 3 2340

    [31]

    Xia J, Jasti R 2012 Angew. Chem. Int. Ed. 51 2474

    [32]

    Segawa Y, Miyamoto S, Omachi H, Matsuura S, Šenel P, Sasamori T, Tokitoh N, Itami K 2011 Angew. Chem. Int. Ed. 50 3244

    [33]

    Jasti R, Sisto T 2012 Synlett. 23 483

    [34]

    Chen Z, Jiang D E, Lu X, Bettinger H F, Dai S, Schleyer P V, Houk K N 2007 Org. Lett. 9 5449

    [35]

    Choi H S, Kim K S 1999 Angew. Chem. Int. Ed. 38 2256

    [36]

    Chen Y K, Liu L V, Tian W Q, Wang Y A 2011 J. Phys. Chem. C 115 9306

    [37]

    Wang X, Liew K M 2012 J. Phys. Chem. C 116 1702

    [38]

    Wang C, Wang L G, Zhang H Y, Terence K S W 2010 Acta Phys. Sin. 59 536 (in Chinese) [王畅, 王利光, 张鸿宇, Terence K S W 2010 59 536]

    [39]

    Yang C, Zhang B X, Feng Y F, Yu Y 2009 Acta Phys. Sin. 58 4066 (in Chinese) [杨春, 张变霞, 冯玉芳, 余毅 2009 58 4066]

    [40]

    Baibarac M, Lira Cantú M, Oró Solé J, Casañ Pastor N, Gomez Romero P 2006 Small 2 1075

    [41]

    Liu Y Q 2010 Organic Nano and Molecular Devices (Beijing:Science Publishing House) p101 (in Chinese) [刘云圻2010 有机纳米与分子器件(北京:科学出版社) 第101页]

    [42]

    Schleyer P V, Maerker C, Dransfeld A, Jiao H J, Hommes N 1996 J. Am. Chem. Soc. 118 6317

    [43]

    Martin R L 2003 J. Chem. Phys. 118 4775

    [44]

    Tretiak S, Mukamel S 2002 Chem. Rev. 102 3171

    [45]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Revision A.02 Gaussian, Inc. Wallingford CT)

    [46]

    Zhao Y, Truhlar D G 2008 Acc. Chem. Res. 41 157

    [47]

    Scholes G D, Tretiak S, McDonald T J, Metzger W K, Engtrakul C, Rumbles G, Heben M J 2007 J. Phys. Chem. C 111 11139

    [48]

    Wong B M 2009 J. Phys. Chem. C 113 21921

  • [1] Chen Zi-Jun, Li Hui-Fang, Xie Zhen-Ming, Zhang Yong-Hang, Zheng Hao, Jiang Kai-Le, Zhang Bo, Zhang Jia-Ming, Wang Huai-Qian. Geometry and electronic structures of rare earth-doped boron-based clusters $ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8). Acta Physica Sinica, 2024, 73(19): 193601. doi: 10.7498/aps.73.20240962
    [2] Dong Xiao. Density functional theory on reaction mechanism between p-doped LiNH2 clusters and LiH and a new hydrogen storage and desorption mechanism. Acta Physica Sinica, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [3] Song Ming-Xu, Wang Huai-Peng, Sun Yi-Lin, Cai Li, Yang Xiao-Kuo, Xie Dan. Modulation of electrical properties in carbon nanotube field-effect transistors through AuCl3 doping. Acta Physica Sinica, 2021, 70(23): 238801. doi: 10.7498/aps.70.20211026
    [4] Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang. Diameter monodispersity of imogolite-like nanotube: a density functional theory study. Acta Physica Sinica, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [5] Tang Chun-Mei, Wang Cheng-Ji, Gao Feng-Zhi, Zhang Yi-Jie, Xu Yan, Gong Jiang-Feng. Calculations of the hydrogen storage of the boron carbon Fullerefle C18B2M(M=Li, Ti, Fe). Acta Physica Sinica, 2015, 64(9): 096103. doi: 10.7498/aps.64.096103
    [6] Yang Xue, Yan Bing, Lian Ke-Yan, Ding Da-Jun. Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state. Acta Physica Sinica, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [7] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [8] Zhang Zhao-Fu, Zhou Tie-Ge, Zuo Xu. First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta Physica Sinica, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [9] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [10] Fan Zhi-Qiang, Xie Fang. Effect of B and N doping on the negative differential resistance in molecular device. Acta Physica Sinica, 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [11] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [12] Ma Guo-Jia, Zhu Jia-Qi, Gong Shui-Li, Gao Wei. First principles studies of nitrogen doped tetrahedral amorphous carbon. Acta Physica Sinica, 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [13] Fan Bing-Bing, Wang Li-Na, Wen He-Jing, Guan Li, Wang Hai-Long, Zhang Rui. Study on the structure of water chain encapsulated in carbon nanotube by density functional theory. Acta Physica Sinica, 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [14] Gao Hong, Zhu Wei-Hua, Tang Chun-Mei, Geng Fang-Fang, Yao Chang-Da, Xu Yun-Ling, Deng Kai-Ming. Density functional calculation on the geometric structure and electronic properties of the endohedral fullerene N2@C60. Acta Physica Sinica, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [15] Chen Guo-Dong, Wang Liu-Ding, An Bo, Yang Min, Cao De-Cai, Liu Guang-Qing. First-principles study of electron field emission from the carbon nanotube with nitrogen doping and H2O adsorption. Acta Physica Sinica, 2009, 58(2): 1190-1194. doi: 10.7498/aps.58.1190
    [16] Chen Liang, Xu Can, Zhang Xiao-Fang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [17] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [18] Chen Guo-Dong, Wang Liu-Ding, Zhang Jiao-Qiang, Cao De-Cai, An Bo, Ding Fu-Cai, Liang Jin-Kui. First-principles study of electron field emission from the carbon nanotube with B doping and H2O adsorption. Acta Physica Sinica, 2008, 57(11): 7164-7167. doi: 10.7498/aps.57.7164
    [19] Xu Bo, Pan Bi-Cai. Theoretical study on the relative stability of α-Ga and β-Ga nanowires in carbon nanotubes. Acta Physica Sinica, 2008, 57(10): 6526-6530. doi: 10.7498/aps.57.6526
    [20] Wang Kun-Peng, Shi Chun-Sheng, Zhao Nai-Qin, Du Xi-Wen. First-principle study of the effect of boron (nitrogen)-doping on adsorbing characteristics of aluminum on single-walled carbon nanotubes. Acta Physica Sinica, 2008, 57(12): 7833-7840. doi: 10.7498/aps.57.7833
Metrics
  • Abstract views:  6926
  • PDF Downloads:  600
  • Cited By: 0
Publishing process
  • Received Date:  23 October 2012
  • Accepted Date:  26 December 2012
  • Published Online:  05 April 2013

/

返回文章
返回
Baidu
map