-
本文使用密度泛函理论(density functional theory, DFT)中的广义梯度近似(generalized gradient approximation, GGA)研究了经碱金属原子Li、过渡金属原子Ti和Fe原子修饰的富勒烯C18B2M(M=Li, Ti, Fe)的储氢性能. 研究发现, C18B2由于B的替代掺杂, 比C20对金属原子具有更高的结合能. 由平均吸附能分析可知: C18B2Li对H2的吸附能力较弱, C18B2Fe对H2的吸附能力过强, 而C18B2Ti对H2的平均吸附能介于0.45-0.59 eV 之间, 介于物理吸附和化学吸附之间 (0.2-0.6 eV), 因此可以实现常温下的可逆储氢. C18B2M(M=Li, Ti, Fe)能够吸附的H2数目最多分别为4, 6和4. 由储氢机理分析可知: C18B2Li主要通过碱金属离子激发的静电场来吸附H2, 而C18B2Ti和C18B2Fe主要通过金属原子与H2之间的Kubas作用来吸附H2. 由于C18B2Ti既有较大的储氢数目, 又可以实现可逆储氢, 因此有望开发成新型纳米储氢材料.The generalized gradient approximation of density functional theory is applied to study the hydrogen storage capacity of the alkali metal atom Li, transition metal atoms Ti and Fe decorated C18B2M(M=Li, Ti, Fe) fullerefles. It is found that the metal is bonding to C18B2 stronger than to C20. When the average adsorption energy of C18B2Li-nH2 is low, and the binding of H2 to C18B2Fe is too strong, C18B2Ti-nH2 has the average adsorption energy between 0.45-0.59 eV, which is in the range from 0.2 to 0.6 eV, so it can realize the reflersible adsorption of H2. A maximum number of H2 adsorbed on to C20B2M(M=Li, Ti, Fe) should be 4, 6, and 4, for Li, Ti, and Fe respectively; this agrees well with the 18 electronic rule. C18B2Li adsorbs H2 molecules mainly through the static electronic field formed by Li ions, while C18B2Ti and C18B2Fe adsorb H2 mainly through the Kubas interaction. Therefore, C18B2Ti can not only adsorb more H2 molecules, but also realize the reflersible hydrogen storage.
-
Keywords:
- C20 /
- C18B2 /
- hydrogen storage /
- density functional
[1] Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J 1997 Nature 386 377
[2] Chen P, Wu X, Tan K L 1999 Science 285 91
[3] Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, Keeffe M O, Yaghi O M 2003 Science 300 1127
[4] Han S S, Goddard W A 2007 J. Am. Chem. Soc. 129 8422
[5] Li M, Zhou Z, Li Y F 2009 Scientia Sinica Chimica. 39 971
[6] Zhao Y F, Lusk M T, Dillon A C 2008 Nano Letters 1 157
[7] Liang Y X, Shui M, Li R S 2007 Acta Phys. Chim. Sin. 23 1647 (in Chinese) [梁云霄, 水淼, 李榕生 2007 物理化学学报 23 1647]
[8] Sun Q, Puru. Jena, Wang Q, Manuel Marquez 2006 Am. Chem. Soc. 128 9741
[9] GuoY J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107
[10] Dillon A C, Parilla P A, Gennet T, Gilbert K E H, Blackburn J L, Kim Y H, Zhao Y, Zhang S B, Alleman J L, Jones K M, McDonald T, Heben M 2004 DOE Hydrogen Program, FY Progress Report
[11] Delley B 1990 J. Chem. Phys. 92 508
[12] Tan C L, Cai W, Tian X H 2006 Chin. Phys. B 15 2718
[13] San D 1996 Dmol. Biosym. Technologies CA
[14] Zhao J Y, Zhao F Q, Xu S Y, Ju X H 2013 J. Phys. Chem. A 117 2213
[15] Wang Z Q, Day P; Pachter R 1996 Chem. Phys. Lett. 248 121
[16] An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Cur. App. Phys. 10 260
[17] Lu G L, Yuan Y B, Deng K M, Wu H P, Yang J L, Wang X 2006 Chem. Phys. Lett. 424 142
[18] Aihara J I 2001 Chem. Phys. Lett 343 465
[19] Ye X J, Liu C S, Jia R, Zeng Z, Zhong W 2013 Phys. Chem. Chem. Phys. 15 2507
[20] Hossain M Z, Kato H S, Kawai M 2005 J. Am. Chem. Soc. 127 15030
[21] Huang H S, Wang X M, Zhao Q D 2012 Acta Phys. Sin. 61 073101 (in Chinese) [黄海深, 王小满, 赵冬秋 2012 61 073101]
[22] Wu G F, Wang J L, Zhang X Y, Zhu L Y 2009 J. Phys. Chem. C 113 17
[23] Schleyer P v R, Maerker C, Dransfeld A 1996 J Am Chem. Soc. 118 6317
[24] SchSeyer P v R, Manohasan M, Wang Z X 2001 Org. Lett. 3 2465
[25] Guo J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107
[26] Kubas G J 2001 Kluwer Academic/Plenum Publishing: New York. 2001
[27] Crabtree R H 2001 The Organometallic Chemistry of the Transition Metals, 3rd ed.; Wiley Interscience: New York, NY
-
[1] Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J 1997 Nature 386 377
[2] Chen P, Wu X, Tan K L 1999 Science 285 91
[3] Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, Keeffe M O, Yaghi O M 2003 Science 300 1127
[4] Han S S, Goddard W A 2007 J. Am. Chem. Soc. 129 8422
[5] Li M, Zhou Z, Li Y F 2009 Scientia Sinica Chimica. 39 971
[6] Zhao Y F, Lusk M T, Dillon A C 2008 Nano Letters 1 157
[7] Liang Y X, Shui M, Li R S 2007 Acta Phys. Chim. Sin. 23 1647 (in Chinese) [梁云霄, 水淼, 李榕生 2007 物理化学学报 23 1647]
[8] Sun Q, Puru. Jena, Wang Q, Manuel Marquez 2006 Am. Chem. Soc. 128 9741
[9] GuoY J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107
[10] Dillon A C, Parilla P A, Gennet T, Gilbert K E H, Blackburn J L, Kim Y H, Zhao Y, Zhang S B, Alleman J L, Jones K M, McDonald T, Heben M 2004 DOE Hydrogen Program, FY Progress Report
[11] Delley B 1990 J. Chem. Phys. 92 508
[12] Tan C L, Cai W, Tian X H 2006 Chin. Phys. B 15 2718
[13] San D 1996 Dmol. Biosym. Technologies CA
[14] Zhao J Y, Zhao F Q, Xu S Y, Ju X H 2013 J. Phys. Chem. A 117 2213
[15] Wang Z Q, Day P; Pachter R 1996 Chem. Phys. Lett. 248 121
[16] An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Cur. App. Phys. 10 260
[17] Lu G L, Yuan Y B, Deng K M, Wu H P, Yang J L, Wang X 2006 Chem. Phys. Lett. 424 142
[18] Aihara J I 2001 Chem. Phys. Lett 343 465
[19] Ye X J, Liu C S, Jia R, Zeng Z, Zhong W 2013 Phys. Chem. Chem. Phys. 15 2507
[20] Hossain M Z, Kato H S, Kawai M 2005 J. Am. Chem. Soc. 127 15030
[21] Huang H S, Wang X M, Zhao Q D 2012 Acta Phys. Sin. 61 073101 (in Chinese) [黄海深, 王小满, 赵冬秋 2012 61 073101]
[22] Wu G F, Wang J L, Zhang X Y, Zhu L Y 2009 J. Phys. Chem. C 113 17
[23] Schleyer P v R, Maerker C, Dransfeld A 1996 J Am Chem. Soc. 118 6317
[24] SchSeyer P v R, Manohasan M, Wang Z X 2001 Org. Lett. 3 2465
[25] Guo J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107
[26] Kubas G J 2001 Kluwer Academic/Plenum Publishing: New York. 2001
[27] Crabtree R H 2001 The Organometallic Chemistry of the Transition Metals, 3rd ed.; Wiley Interscience: New York, NY
计量
- 文章访问数: 5977
- PDF下载量: 453
- 被引次数: 0