搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳硼富勒烯衍生物C18B2M(M=Li, Ti, Fe)的储氢性能计算研究

唐春梅 王成杰 高凤志 张轶杰 徐燕 巩江峰

引用本文:
Citation:

碳硼富勒烯衍生物C18B2M(M=Li, Ti, Fe)的储氢性能计算研究

唐春梅, 王成杰, 高凤志, 张轶杰, 徐燕, 巩江峰

Calculations of the hydrogen storage of the boron carbon Fullerefle C18B2M(M=Li, Ti, Fe)

Tang Chun-Mei, Wang Cheng-Ji, Gao Feng-Zhi, Zhang Yi-Jie, Xu Yan, Gong Jiang-Feng
PDF
导出引用
  • 本文使用密度泛函理论(density functional theory, DFT)中的广义梯度近似(generalized gradient approximation, GGA)研究了经碱金属原子Li、过渡金属原子Ti和Fe原子修饰的富勒烯C18B2M(M=Li, Ti, Fe)的储氢性能. 研究发现, C18B2由于B的替代掺杂, 比C20对金属原子具有更高的结合能. 由平均吸附能分析可知: C18B2Li对H2的吸附能力较弱, C18B2Fe对H2的吸附能力过强, 而C18B2Ti对H2的平均吸附能介于0.45-0.59 eV 之间, 介于物理吸附和化学吸附之间 (0.2-0.6 eV), 因此可以实现常温下的可逆储氢. C18B2M(M=Li, Ti, Fe)能够吸附的H2数目最多分别为4, 6和4. 由储氢机理分析可知: C18B2Li主要通过碱金属离子激发的静电场来吸附H2, 而C18B2Ti和C18B2Fe主要通过金属原子与H2之间的Kubas作用来吸附H2. 由于C18B2Ti既有较大的储氢数目, 又可以实现可逆储氢, 因此有望开发成新型纳米储氢材料.
    The generalized gradient approximation of density functional theory is applied to study the hydrogen storage capacity of the alkali metal atom Li, transition metal atoms Ti and Fe decorated C18B2M(M=Li, Ti, Fe) fullerefles. It is found that the metal is bonding to C18B2 stronger than to C20. When the average adsorption energy of C18B2Li-nH2 is low, and the binding of H2 to C18B2Fe is too strong, C18B2Ti-nH2 has the average adsorption energy between 0.45-0.59 eV, which is in the range from 0.2 to 0.6 eV, so it can realize the reflersible adsorption of H2. A maximum number of H2 adsorbed on to C20B2M(M=Li, Ti, Fe) should be 4, 6, and 4, for Li, Ti, and Fe respectively; this agrees well with the 18 electronic rule. C18B2Li adsorbs H2 molecules mainly through the static electronic field formed by Li ions, while C18B2Ti and C18B2Fe adsorb H2 mainly through the Kubas interaction. Therefore, C18B2Ti can not only adsorb more H2 molecules, but also realize the reflersible hydrogen storage.
    • 基金项目: 国家自然科学基金 (批准号: 11104062, 10947132)和河海大学创新训练项目(批准号: 2014102941048, 201410294035X)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104062, 10947132), and the Hohai University Innovation Training Project, China (Grant Nos. 2014102941048, 201410294035X).
    [1]

    Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J 1997 Nature 386 377

    [2]

    Chen P, Wu X, Tan K L 1999 Science 285 91

    [3]

    Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, Keeffe M O, Yaghi O M 2003 Science 300 1127

    [4]

    Han S S, Goddard W A 2007 J. Am. Chem. Soc. 129 8422

    [5]

    Li M, Zhou Z, Li Y F 2009 Scientia Sinica Chimica. 39 971

    [6]

    Zhao Y F, Lusk M T, Dillon A C 2008 Nano Letters 1 157

    [7]

    Liang Y X, Shui M, Li R S 2007 Acta Phys. Chim. Sin. 23 1647 (in Chinese) [梁云霄, 水淼, 李榕生 2007 物理化学学报 23 1647]

    [8]

    Sun Q, Puru. Jena, Wang Q, Manuel Marquez 2006 Am. Chem. Soc. 128 9741

    [9]

    GuoY J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107

    [10]

    Dillon A C, Parilla P A, Gennet T, Gilbert K E H, Blackburn J L, Kim Y H, Zhao Y, Zhang S B, Alleman J L, Jones K M, McDonald T, Heben M 2004 DOE Hydrogen Program, FY Progress Report

    [11]

    Delley B 1990 J. Chem. Phys. 92 508

    [12]

    Tan C L, Cai W, Tian X H 2006 Chin. Phys. B 15 2718

    [13]

    San D 1996 Dmol. Biosym. Technologies CA

    [14]

    Zhao J Y, Zhao F Q, Xu S Y, Ju X H 2013 J. Phys. Chem. A 117 2213

    [15]

    Wang Z Q, Day P; Pachter R 1996 Chem. Phys. Lett. 248 121

    [16]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Cur. App. Phys. 10 260

    [17]

    Lu G L, Yuan Y B, Deng K M, Wu H P, Yang J L, Wang X 2006 Chem. Phys. Lett. 424 142

    [18]

    Aihara J I 2001 Chem. Phys. Lett 343 465

    [19]

    Ye X J, Liu C S, Jia R, Zeng Z, Zhong W 2013 Phys. Chem. Chem. Phys. 15 2507

    [20]

    Hossain M Z, Kato H S, Kawai M 2005 J. Am. Chem. Soc. 127 15030

    [21]

    Huang H S, Wang X M, Zhao Q D 2012 Acta Phys. Sin. 61 073101 (in Chinese) [黄海深, 王小满, 赵冬秋 2012 61 073101]

    [22]

    Wu G F, Wang J L, Zhang X Y, Zhu L Y 2009 J. Phys. Chem. C 113 17

    [23]

    Schleyer P v R, Maerker C, Dransfeld A 1996 J Am Chem. Soc. 118 6317

    [24]

    SchSeyer P v R, Manohasan M, Wang Z X 2001 Org. Lett. 3 2465

    [25]

    Guo J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107

    [26]

    Kubas G J 2001 Kluwer Academic/Plenum Publishing: New York. 2001

    [27]

    Crabtree R H 2001 The Organometallic Chemistry of the Transition Metals, 3rd ed.; Wiley Interscience: New York, NY

  • [1]

    Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J 1997 Nature 386 377

    [2]

    Chen P, Wu X, Tan K L 1999 Science 285 91

    [3]

    Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, Keeffe M O, Yaghi O M 2003 Science 300 1127

    [4]

    Han S S, Goddard W A 2007 J. Am. Chem. Soc. 129 8422

    [5]

    Li M, Zhou Z, Li Y F 2009 Scientia Sinica Chimica. 39 971

    [6]

    Zhao Y F, Lusk M T, Dillon A C 2008 Nano Letters 1 157

    [7]

    Liang Y X, Shui M, Li R S 2007 Acta Phys. Chim. Sin. 23 1647 (in Chinese) [梁云霄, 水淼, 李榕生 2007 物理化学学报 23 1647]

    [8]

    Sun Q, Puru. Jena, Wang Q, Manuel Marquez 2006 Am. Chem. Soc. 128 9741

    [9]

    GuoY J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107

    [10]

    Dillon A C, Parilla P A, Gennet T, Gilbert K E H, Blackburn J L, Kim Y H, Zhao Y, Zhang S B, Alleman J L, Jones K M, McDonald T, Heben M 2004 DOE Hydrogen Program, FY Progress Report

    [11]

    Delley B 1990 J. Chem. Phys. 92 508

    [12]

    Tan C L, Cai W, Tian X H 2006 Chin. Phys. B 15 2718

    [13]

    San D 1996 Dmol. Biosym. Technologies CA

    [14]

    Zhao J Y, Zhao F Q, Xu S Y, Ju X H 2013 J. Phys. Chem. A 117 2213

    [15]

    Wang Z Q, Day P; Pachter R 1996 Chem. Phys. Lett. 248 121

    [16]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Cur. App. Phys. 10 260

    [17]

    Lu G L, Yuan Y B, Deng K M, Wu H P, Yang J L, Wang X 2006 Chem. Phys. Lett. 424 142

    [18]

    Aihara J I 2001 Chem. Phys. Lett 343 465

    [19]

    Ye X J, Liu C S, Jia R, Zeng Z, Zhong W 2013 Phys. Chem. Chem. Phys. 15 2507

    [20]

    Hossain M Z, Kato H S, Kawai M 2005 J. Am. Chem. Soc. 127 15030

    [21]

    Huang H S, Wang X M, Zhao Q D 2012 Acta Phys. Sin. 61 073101 (in Chinese) [黄海深, 王小满, 赵冬秋 2012 61 073101]

    [22]

    Wu G F, Wang J L, Zhang X Y, Zhu L Y 2009 J. Phys. Chem. C 113 17

    [23]

    Schleyer P v R, Maerker C, Dransfeld A 1996 J Am Chem. Soc. 118 6317

    [24]

    SchSeyer P v R, Manohasan M, Wang Z X 2001 Org. Lett. 3 2465

    [25]

    Guo J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107

    [26]

    Kubas G J 2001 Kluwer Academic/Plenum Publishing: New York. 2001

    [27]

    Crabtree R H 2001 The Organometallic Chemistry of the Transition Metals, 3rd ed.; Wiley Interscience: New York, NY

  • [1] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制.  , 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [2] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究.  , 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [3] 刘秀英, 李晓凤, 于景新, 李晓东. Pd负载共价有机骨架COF-108上氢溢流机理的密度泛函理论研究.  , 2016, 65(15): 157302. doi: 10.7498/aps.65.157302
    [4] 张忠硕, 张秀荣, 顾江, 马攀涛. 富勒烯C20四聚体的结构与性能研究.  , 2016, 65(2): 026101. doi: 10.7498/aps.65.026101
    [5] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [6] 祁鹏堂, 陈宏善. Li修饰的C24团簇的储氢性能.  , 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [7] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究.  , 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [9] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究.  , 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [10] 卢其亮, 黄守国, 李宜德. Mg原子修饰的封闭型六硼烷B6H62-储氢性质的研究.  , 2013, 62(21): 213601. doi: 10.7498/aps.62.213601
    [11] 阮文, 罗文浪, 余晓光, 谢安东, 伍冬兰. 锂原子修饰B6团簇的储氢性能研究.  , 2013, 62(5): 053103. doi: 10.7498/aps.62.053103
    [12] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究.  , 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [13] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究.  , 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [14] 曹青松, 袁勇波, 肖传云, 陆瑞锋, 阚二军, 邓开明. C80H80几何结构和电子性质的密度泛函研究.  , 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [15] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究.  , 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [16] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究.  , 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [17] 唐春梅, 朱卫华, 邓开明. 内掺过渡金属富勒烯衍生物Ni@C20H20几何结构、成键和电磁性质的密度泛函计算研究.  , 2009, 58(7): 4567-4572. doi: 10.7498/aps.58.4567
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究.  , 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [19] 易双萍, 张海燕, 欧阳玉, 王银海, 庞晋山. 真空热处理碳纳米管的储氢性能研究.  , 2006, 55(5): 2644-2650. doi: 10.7498/aps.55.2644
    [20] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
计量
  • 文章访问数:  5977
  • PDF下载量:  453
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-28
  • 修回日期:  2014-11-23
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map