-
硅表面固有的菲涅耳反射, 使得硅基半导体光电器件(如太阳能电池、红外探测器)表面有30%以上的入射光因反射而损失掉, 严重影响着器件的光电转换效率. 寻找一种方法降低硅基表面的反射率, 进而提高器件的效率成为近年来研究的重点.本文基于纳米压印光刻技术, 在2 英寸单晶硅表面制备出周期530 nm, 高240 nm的二维六角截顶抛面纳米柱阵列结构. 反射率的测试表明, 当入射光角度为8° 时, 有纳米结构的硅片相对于无纳米 结构的硅片来讲, 在400到2500 nm波长范围内的反射率有很明显的降低, 其中, 800到2000 nm波段的反射率都小于10%, 在波长1360 nm附近的反射率由31%降低为零. 结合等效介质理论和严格耦合波理论对结果进行了分析和验证.The intrinsic Fresnel reflection of Si surface, which causes more than 30% of the incident light to be reflected back from the surface, seriously influences the photoelectric conversion efficiency of Si-based semiconductor photoelectric device, such as solar cell and infrared detector. Recently, how to find a simple and efficient method, which is also suitable for mass production, aiming to suppress the undesired reflectivity and therefore improving the efficiency of the device, has become a research focus. In this work, we successfully convert a 2D nanopillar array structure into the Si surface via the nanoimprint lithography. The nanopillar has a flat surface and a paraboloid-like side wall profile. The period and the height of the hexagonal array structure are 530 nm and 240 nm, respectively. The cut-paraboloid nanopillar structure generates a relatively smooth gradient of the refractive index in the optical interface, which plays a key role in suppressing the Fresnel reflection in a wide range of wavelength. The reflectivity of the nanopillar arrayed Si surface is tested in a wavelength range from 400 to 2500 nm at an incident angle of 8° during the measurement. Compared with the unstructured Si, the structured Si has a reflectivity that significantly decreases in the test area: in a wavelength range from 400 to 1200 nm, and the reflectivity of the silicon surface is less than 10%. Specifically, the reflectivity is almost zero at a wavelength of about 1360 nm. The results are confirmed with the effective medium and rigorous coupled-wave theory.
-
Keywords:
- nanoimprint lithography /
- cut-paraboloid arrays /
- antireflection /
- effective medium theory
[1] Huen T 1979 Appl. Opt. 18 1927
[2] Doshi P, Jellison G E, Rohatgi A 1997 Appl. Opt. 36 7826
[3] Kuo M L, Poxson D J, Kim Y S, Mont F W, Kim J K, Schu-bert E F, Lin S Y 2008 Opt. Lett. 33 2527
[4] Song Y M, Choi H J, Yu J S, Lee Y T 2010 Opt. Express 18 13063
[5] Bernhard C G, Miller W H 1962 Acta Physiol. Scand. 56 385
[6] Boden S A, Bagnall D M 2008 Appl. Phys. Lett. 93 133108
[7] Chen Q, Hubbard G, Shields P A, Liu C, Allsopp D W E, Wang W N, Abbott S 2009 Appl. Phys. Lett. 94 263118
[8] Tsai M A, Tseng P C, Chen H C, Kuo H C, Yu P C 2011 Opt. Express 19 A28
[9] Kanamori Y, Hane K, Sai H, Yugami H 2001 Appl. Phys. Lett. 78 142
[10] Srivastava S K, Kumar D, Singh P K, Kar M, Kumar V, Husain M 2010 Sol. Energ. Mat. Sol. C 94 1506
[11] Ishimori M, Kanamori Y, Sasaki M, Hane K 2002 Jpn. J. Appl. Phys. 41 4346
[12] Trompoukis C, Herman A, Daif Ei O, Depauw V, van Geste D, Nieuwenhuysen K, Gordon I, Deparis O, Poortmans J 2012 Proc. SPIE 8438 84380R
[13] Sun T Y, Xu Z M, Wang S B, Zhao W N, Wu X H, Liu S S, Liu W, Peng J, Wang Z H, Zhang X M, He J 2013 J. Nanosci. Nanotechnol. 13 1871
[14] Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104 (in Chinese) [彭静, 徐智谋, 吴小峰, 孙堂友 2013 62 036104 ]
[15] Ahn S H, Guo L J 2009 ACS Nano 3 2304
[16] Wang L, Liu W, Zhang Y W, Qiu F, Zhou N, Wang D L, Xu Z M, Zhao Y L, Yu Y L 2012 Microelectron. Eng. 93 43
[17] Stavenga D G, Foletti S, Palasantzas G, Arikawa K 2006 P. Roy. Soc. B: Biol. Sci. 273 661
[18] Ji S, Park J, Lim H 2012 Nanoscale 4 4603
[19] Liu G Y, Tan X W, Yao J C, Wang Z, Xiong Z H 2008 Acta Phys. Sin. 57 514 (in Chinese) [刘光友, 谭兴文, 姚金才, 王振, 熊祖洪 2008 57 514]
[20] Hadobas K, Kirsch S, Carl A, Acet M, Wassermann E F 2000 Nanotechnology 11 161
[21] Lin Y R, Lai K Y, Wang H P, He J H 2010 Nanoscale 2 2765
[22] Leem J W, Song Y M, Lee Y T, Yu J S 2010 Appl. Phys. B 100 89
-
[1] Huen T 1979 Appl. Opt. 18 1927
[2] Doshi P, Jellison G E, Rohatgi A 1997 Appl. Opt. 36 7826
[3] Kuo M L, Poxson D J, Kim Y S, Mont F W, Kim J K, Schu-bert E F, Lin S Y 2008 Opt. Lett. 33 2527
[4] Song Y M, Choi H J, Yu J S, Lee Y T 2010 Opt. Express 18 13063
[5] Bernhard C G, Miller W H 1962 Acta Physiol. Scand. 56 385
[6] Boden S A, Bagnall D M 2008 Appl. Phys. Lett. 93 133108
[7] Chen Q, Hubbard G, Shields P A, Liu C, Allsopp D W E, Wang W N, Abbott S 2009 Appl. Phys. Lett. 94 263118
[8] Tsai M A, Tseng P C, Chen H C, Kuo H C, Yu P C 2011 Opt. Express 19 A28
[9] Kanamori Y, Hane K, Sai H, Yugami H 2001 Appl. Phys. Lett. 78 142
[10] Srivastava S K, Kumar D, Singh P K, Kar M, Kumar V, Husain M 2010 Sol. Energ. Mat. Sol. C 94 1506
[11] Ishimori M, Kanamori Y, Sasaki M, Hane K 2002 Jpn. J. Appl. Phys. 41 4346
[12] Trompoukis C, Herman A, Daif Ei O, Depauw V, van Geste D, Nieuwenhuysen K, Gordon I, Deparis O, Poortmans J 2012 Proc. SPIE 8438 84380R
[13] Sun T Y, Xu Z M, Wang S B, Zhao W N, Wu X H, Liu S S, Liu W, Peng J, Wang Z H, Zhang X M, He J 2013 J. Nanosci. Nanotechnol. 13 1871
[14] Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104 (in Chinese) [彭静, 徐智谋, 吴小峰, 孙堂友 2013 62 036104 ]
[15] Ahn S H, Guo L J 2009 ACS Nano 3 2304
[16] Wang L, Liu W, Zhang Y W, Qiu F, Zhou N, Wang D L, Xu Z M, Zhao Y L, Yu Y L 2012 Microelectron. Eng. 93 43
[17] Stavenga D G, Foletti S, Palasantzas G, Arikawa K 2006 P. Roy. Soc. B: Biol. Sci. 273 661
[18] Ji S, Park J, Lim H 2012 Nanoscale 4 4603
[19] Liu G Y, Tan X W, Yao J C, Wang Z, Xiong Z H 2008 Acta Phys. Sin. 57 514 (in Chinese) [刘光友, 谭兴文, 姚金才, 王振, 熊祖洪 2008 57 514]
[20] Hadobas K, Kirsch S, Carl A, Acet M, Wassermann E F 2000 Nanotechnology 11 161
[21] Lin Y R, Lai K Y, Wang H P, He J H 2010 Nanoscale 2 2765
[22] Leem J W, Song Y M, Lee Y T, Yu J S 2010 Appl. Phys. B 100 89
计量
- 文章访问数: 6481
- PDF下载量: 1115
- 被引次数: 0