搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅表面抗反射纳米周期阵列结构的纳米压印制备与性能研究

张铮 徐智谋 孙堂友 何健 徐海峰 张学明 刘世元

引用本文:
Citation:

硅表面抗反射纳米周期阵列结构的纳米压印制备与性能研究

张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元

The fabrication of the antireflective periodic nano-arrary structure on Si surface using nanoimprint lithography and the study on its properties

Zhang Zheng, Xu Zhi-Mou, Sun Tang-You, He Jian, Xu Hai-Feng, Zhang Xue-Ming, Liu Shi-Yuan
PDF
导出引用
  • 硅表面固有的菲涅耳反射, 使得硅基半导体光电器件(如太阳能电池、红外探测器)表面有30%以上的入射光因反射而损失掉, 严重影响着器件的光电转换效率. 寻找一种方法降低硅基表面的反射率, 进而提高器件的效率成为近年来研究的重点.本文基于纳米压印光刻技术, 在2 英寸单晶硅表面制备出周期530 nm, 高240 nm的二维六角截顶抛面纳米柱阵列结构. 反射率的测试表明, 当入射光角度为8° 时, 有纳米结构的硅片相对于无纳米 结构的硅片来讲, 在400到2500 nm波长范围内的反射率有很明显的降低, 其中, 800到2000 nm波段的反射率都小于10%, 在波长1360 nm附近的反射率由31%降低为零. 结合等效介质理论和严格耦合波理论对结果进行了分析和验证.
    The intrinsic Fresnel reflection of Si surface, which causes more than 30% of the incident light to be reflected back from the surface, seriously influences the photoelectric conversion efficiency of Si-based semiconductor photoelectric device, such as solar cell and infrared detector. Recently, how to find a simple and efficient method, which is also suitable for mass production, aiming to suppress the undesired reflectivity and therefore improving the efficiency of the device, has become a research focus. In this work, we successfully convert a 2D nanopillar array structure into the Si surface via the nanoimprint lithography. The nanopillar has a flat surface and a paraboloid-like side wall profile. The period and the height of the hexagonal array structure are 530 nm and 240 nm, respectively. The cut-paraboloid nanopillar structure generates a relatively smooth gradient of the refractive index in the optical interface, which plays a key role in suppressing the Fresnel reflection in a wide range of wavelength. The reflectivity of the nanopillar arrayed Si surface is tested in a wavelength range from 400 to 2500 nm at an incident angle of 8° during the measurement. Compared with the unstructured Si, the structured Si has a reflectivity that significantly decreases in the test area: in a wavelength range from 400 to 1200 nm, and the reflectivity of the silicon surface is less than 10%. Specifically, the reflectivity is almost zero at a wavelength of about 1360 nm. The results are confirmed with the effective medium and rigorous coupled-wave theory.
    • 基金项目: 国家自然科学基金(批准号: 61076042, 60607006);国家重大科学仪器设备开发专项(批准号: 2011YQ16000205) 和国家高技术研究发展计划(批准号: 2011AA03A106)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076042, 60607006), the Special Project on Development of National Key Scientific Instruments and Equipment of China (Grant No. 2011YQ16000205), and the National High Technology Research and Development Program of China (Grant No. 2011AA03A106).
    [1]

    Huen T 1979 Appl. Opt. 18 1927

    [2]

    Doshi P, Jellison G E, Rohatgi A 1997 Appl. Opt. 36 7826

    [3]

    Kuo M L, Poxson D J, Kim Y S, Mont F W, Kim J K, Schu-bert E F, Lin S Y 2008 Opt. Lett. 33 2527

    [4]

    Song Y M, Choi H J, Yu J S, Lee Y T 2010 Opt. Express 18 13063

    [5]

    Bernhard C G, Miller W H 1962 Acta Physiol. Scand. 56 385

    [6]

    Boden S A, Bagnall D M 2008 Appl. Phys. Lett. 93 133108

    [7]

    Chen Q, Hubbard G, Shields P A, Liu C, Allsopp D W E, Wang W N, Abbott S 2009 Appl. Phys. Lett. 94 263118

    [8]

    Tsai M A, Tseng P C, Chen H C, Kuo H C, Yu P C 2011 Opt. Express 19 A28

    [9]

    Kanamori Y, Hane K, Sai H, Yugami H 2001 Appl. Phys. Lett. 78 142

    [10]

    Srivastava S K, Kumar D, Singh P K, Kar M, Kumar V, Husain M 2010 Sol. Energ. Mat. Sol. C 94 1506

    [11]

    Ishimori M, Kanamori Y, Sasaki M, Hane K 2002 Jpn. J. Appl. Phys. 41 4346

    [12]

    Trompoukis C, Herman A, Daif Ei O, Depauw V, van Geste D, Nieuwenhuysen K, Gordon I, Deparis O, Poortmans J 2012 Proc. SPIE 8438 84380R

    [13]

    Sun T Y, Xu Z M, Wang S B, Zhao W N, Wu X H, Liu S S, Liu W, Peng J, Wang Z H, Zhang X M, He J 2013 J. Nanosci. Nanotechnol. 13 1871

    [14]

    Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104 (in Chinese) [彭静, 徐智谋, 吴小峰, 孙堂友 2013 62 036104 ]

    [15]

    Ahn S H, Guo L J 2009 ACS Nano 3 2304

    [16]

    Wang L, Liu W, Zhang Y W, Qiu F, Zhou N, Wang D L, Xu Z M, Zhao Y L, Yu Y L 2012 Microelectron. Eng. 93 43

    [17]

    Stavenga D G, Foletti S, Palasantzas G, Arikawa K 2006 P. Roy. Soc. B: Biol. Sci. 273 661

    [18]

    Ji S, Park J, Lim H 2012 Nanoscale 4 4603

    [19]

    Liu G Y, Tan X W, Yao J C, Wang Z, Xiong Z H 2008 Acta Phys. Sin. 57 514 (in Chinese) [刘光友, 谭兴文, 姚金才, 王振, 熊祖洪 2008 57 514]

    [20]

    Hadobas K, Kirsch S, Carl A, Acet M, Wassermann E F 2000 Nanotechnology 11 161

    [21]

    Lin Y R, Lai K Y, Wang H P, He J H 2010 Nanoscale 2 2765

    [22]

    Leem J W, Song Y M, Lee Y T, Yu J S 2010 Appl. Phys. B 100 89

  • [1]

    Huen T 1979 Appl. Opt. 18 1927

    [2]

    Doshi P, Jellison G E, Rohatgi A 1997 Appl. Opt. 36 7826

    [3]

    Kuo M L, Poxson D J, Kim Y S, Mont F W, Kim J K, Schu-bert E F, Lin S Y 2008 Opt. Lett. 33 2527

    [4]

    Song Y M, Choi H J, Yu J S, Lee Y T 2010 Opt. Express 18 13063

    [5]

    Bernhard C G, Miller W H 1962 Acta Physiol. Scand. 56 385

    [6]

    Boden S A, Bagnall D M 2008 Appl. Phys. Lett. 93 133108

    [7]

    Chen Q, Hubbard G, Shields P A, Liu C, Allsopp D W E, Wang W N, Abbott S 2009 Appl. Phys. Lett. 94 263118

    [8]

    Tsai M A, Tseng P C, Chen H C, Kuo H C, Yu P C 2011 Opt. Express 19 A28

    [9]

    Kanamori Y, Hane K, Sai H, Yugami H 2001 Appl. Phys. Lett. 78 142

    [10]

    Srivastava S K, Kumar D, Singh P K, Kar M, Kumar V, Husain M 2010 Sol. Energ. Mat. Sol. C 94 1506

    [11]

    Ishimori M, Kanamori Y, Sasaki M, Hane K 2002 Jpn. J. Appl. Phys. 41 4346

    [12]

    Trompoukis C, Herman A, Daif Ei O, Depauw V, van Geste D, Nieuwenhuysen K, Gordon I, Deparis O, Poortmans J 2012 Proc. SPIE 8438 84380R

    [13]

    Sun T Y, Xu Z M, Wang S B, Zhao W N, Wu X H, Liu S S, Liu W, Peng J, Wang Z H, Zhang X M, He J 2013 J. Nanosci. Nanotechnol. 13 1871

    [14]

    Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104 (in Chinese) [彭静, 徐智谋, 吴小峰, 孙堂友 2013 62 036104 ]

    [15]

    Ahn S H, Guo L J 2009 ACS Nano 3 2304

    [16]

    Wang L, Liu W, Zhang Y W, Qiu F, Zhou N, Wang D L, Xu Z M, Zhao Y L, Yu Y L 2012 Microelectron. Eng. 93 43

    [17]

    Stavenga D G, Foletti S, Palasantzas G, Arikawa K 2006 P. Roy. Soc. B: Biol. Sci. 273 661

    [18]

    Ji S, Park J, Lim H 2012 Nanoscale 4 4603

    [19]

    Liu G Y, Tan X W, Yao J C, Wang Z, Xiong Z H 2008 Acta Phys. Sin. 57 514 (in Chinese) [刘光友, 谭兴文, 姚金才, 王振, 熊祖洪 2008 57 514]

    [20]

    Hadobas K, Kirsch S, Carl A, Acet M, Wassermann E F 2000 Nanotechnology 11 161

    [21]

    Lin Y R, Lai K Y, Wang H P, He J H 2010 Nanoscale 2 2765

    [22]

    Leem J W, Song Y M, Lee Y T, Yu J S 2010 Appl. Phys. B 100 89

  • [1] 温广锋, 赵领中, 张琳, 陈毅云, 罗圻林, 方安安, 刘士阳. 基于柱对称梯度折射率体系的可调控光束传输.  , 2022, 71(14): 144201. doi: 10.7498/aps.71.20212247
    [2] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析.  , 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [3] 赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖. 基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究.  , 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [4] 林海笑, 俞昕宁, 刘士阳. 基于零折射磁性特异电磁介质的波前调控.  , 2015, 64(3): 034203. doi: 10.7498/aps.64.034203
    [5] 耿滔, 王岩, 王新, 董祥美. 非长波极限下二维光子晶体中横电模的等效介质理论.  , 2015, 64(15): 154210. doi: 10.7498/aps.64.154210
    [6] 马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元. 基于光谱椭偏仪的纳米光栅无损检测.  , 2014, 63(3): 039101. doi: 10.7498/aps.63.039101
    [7] 陈修国, 刘世元, 张传维, 吴懿平, 马智超, 孙堂友, 徐智谋. 基于Mueller矩阵椭偏仪的纳米压印模板与光刻胶光栅结构准确测量.  , 2014, 63(18): 180701. doi: 10.7498/aps.63.180701
    [8] 陆乃彦, 翁雨燕. 软模板纳米压印技术及其对共轭高分子的取向控制研究.  , 2014, 63(22): 228104. doi: 10.7498/aps.63.228104
    [9] 张然, 曹小文, 徐微微, Haraguchi Masanobu, 高炳荣. 抗反射疏水红外窗口的制备研究.  , 2014, 63(5): 054201. doi: 10.7498/aps.63.054201
    [10] 张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静. 纳米压印多孔硅模板的研究.  , 2014, 63(1): 018102. doi: 10.7498/aps.63.018102
    [11] 彭静, 徐智谋, 吴小峰, 孙堂友. 纳米压印技术制备表面光子晶体LED的研究.  , 2013, 62(3): 036104. doi: 10.7498/aps.62.036104
    [12] 夏委委, 郑国恒, 李天昊, 刘超然, 李冬雪, 段智勇. 假塑性流体纳米压印中影响填充度的因素.  , 2013, 62(18): 188105. doi: 10.7498/aps.62.188105
    [13] 李天昊, 郑国恒, 刘超然, 夏委委, 李冬雪, 段智勇. 掩膜板凸出环隔离压缩式纳米压印施压气体的研究.  , 2013, 62(6): 068103. doi: 10.7498/aps.62.068103
    [14] 桑田, 蔡托, 刘芳, 蔡绍洪, 张大伟. 带虚设层的抗反射结构导模共振滤波器设计与分析.  , 2013, 62(2): 024215. doi: 10.7498/aps.62.024215
    [15] 韩涛, 孟凡英, 张松, 汪建强, 程雪梅. 银纳米颗粒减反射特性的理论研究.  , 2011, 60(2): 027303. doi: 10.7498/aps.60.027303
    [16] 康果果, 谭峤峰, 陈伟力, 李群庆, 金伟其, 金国藩. 亚波长金属线栅的设计、制备及偏振成像实验研究.  , 2011, 60(1): 014218. doi: 10.7498/aps.60.014218
    [17] 乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究.  , 2010, 59(3): 1977-1984. doi: 10.7498/aps.59.1977
    [18] 刘艳芬, 刘晶会, 贾 城. 侧向铁磁/铁磁超晶格的推迟模式.  , 2008, 57(3): 1897-1901. doi: 10.7498/aps.57.1897
    [19] 刘世元, 顾华勇, 张传维, 沈宏伟. 基于修正等效介质理论的微纳深沟槽结构反射率快速算法研究.  , 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [20] 陈雷明, 郭艳峰, 郭 熹, 唐为华. 改性光刻胶制备纳米压印模版.  , 2006, 55(12): 6511-6514. doi: 10.7498/aps.55.6511
计量
  • 文章访问数:  6481
  • PDF下载量:  1115
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-27
  • 修回日期:  2013-05-02
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map