-
纳米压印模板通常需要经过电子束光刻、电子束沉积、光刻胶剥离、反应离子刻蚀等一系列复杂工艺获得, 这使得纳米压印模板的制作难度大, 成本高. 寻找一种灵活简单的纳米压印模板制备方法以提升纳米压印模板的制作效率, 是广泛应用纳米压印技术的研究重点和难点. 本文以写好光栅结构的电子束光刻胶层为母模板, 获得聚二甲基硅氧烷软模板, 并以此为模板对共轭高分子聚(9,9-二辛基)芴薄膜进行纳米压印, 实现光栅结构转移, 成功制备出纳米光栅结构的共轭高分子薄膜. 偏振吸收谱和透射电镜结果表明, 纳米压印实现图案转移的同时, 还可以将共轭高分子的主链控制在光栅条纹方向, 这将对有机发光器件性能的提升具有重要的意义. 研究结果还表明, 应用该方法同样可以对聚(9,9-二辛基芴共苯并噻二唑)薄膜进行光栅图案化, 同时实现其取向控制.The templates for the nanoimprinting are fabricated usually through a series of steps, such as E-beam lithography, E-beam deposition, liftoff and reactive ion etching. Any mistake during these steps would lead to the failure of the fabrication, so the template is always expensive and difficult to make. Under this circumstance, it is really important to find an effective way to build the template. In this report, the patterned photoresist layer is used as a mother set of the pattern definition of the soft template polydimethylsiloxane. The grating structure of conjugated polymer poly (9,9-dioctylfluorene) film is successfully obtained by this template in the nanoimprinting process. In addition, we also find the anisotropy of molecular chain distribution. Both the transmission electron microscope diffraction pattern and the polarized absorption spectrum are used to prove that this anisotropy is induced by the molecular chain alignment, which would be really helpful in future applications in organic emission equipment. Moreover, this result is also applicable to the poly (9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-2,1',3-thiadiazole) film system.
[1] Veinot J G C, Marks T J 2005 Accounts Chem. Res. 38 632
[2] Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104 (in Chinese) [彭静, 徐智谋, 吴小峰, 孙堂友 2013 62 036104]
[3] Nguyen T D, Hukic-Markosian G, Wang F J, Wojcik L, Li X G, Ehrenfreund E, Vardeny Z V 2010 Nat. Mater. 9 345
[4] Forrest S R 2004 Nature 428 911
[5] Hu Z J, Tian M W, Nysten B, Jonas A M 2009 Nat. Mater. 8 62
[6] Podsiadlo P, Kaushik A K, Arruda E M, Waas A M, Shim B S, Xu J D, Nandivada H, Pumplin B G, Lahann J, Ramamoorthy A, Kotov N A 2007 Science 318 80
[7] Yaman M, Khudiyev T, Ozgur E, Kanik M, Aktas O, Ozgur E O, Deniz H, Korkut E, Bayindir M 2011 Nat. Mater. 10 494
[8] Chou S Y, Krauss P R, Renstrom P J 1996 J. Vac. Sci. Technol. B 14 4129
[9] Xu Q B, Rioux R M, Dickey M D, Whitesides G M 2008 Accounts Chem. Res. 41 1566
[10] Park H J, Kang M G, Guo L J 2009 ACS Nano 3 2601
[11] Voet V S D, Pick T E, Park S M, Moritz M, Hammack A T, Urban J J, Ogletree D F, Olynick D L, Helms B A 2011 J. Am. Chem. Soc. 133 2812
[12] Zhang Z, Xu Z M, Sun T Y, He J, Xu H F, Zhang X M, Liu S Y 2013 Acta Phys. Sin. 62 168102 (in Chinese) [张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张雪明, 刘世元 2013 62 168102]
[13] Zhou W M, Niu X M, Min G Q, Song Z T, Zhang J, Liu Y B, Li X L, Zhang J P, Feng S L 2009 Microelectron. Eng. 86 2375
[14] Zhang Z, Xu Z M, Sun T Y, Xu H F, Chen C H, Peng J 2014 Acta Phys. Sin. 63 018102 (in Chinese) [张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静 2014 63 018102]
[15] Roach P, Shirtcliffe N J, Newton M I 2008 Soft Matter 4 224
[16] Xia Y, Whitesides G M 1998 Angew. Chem. Int. Edit. 37 550
[17] Chaudhury M K, Whitesides G M 1991 Langmiur 7 1013
[18] Wang D F, Zhang X D, Liu Y J, Wu C Y, Zhang C S, Wei C C, Zhao Y 2013 Chin. Phys. B 22 027801
[19] Zhuang Z, Liu B, Zhang R, Li Y C, Xie Z L, Chen P, Zhao H, Xiu X Q, Zheng Y D 2013 Laser & Optoelectronics Progress 50 020002 (in Chinese) [庄喆, 刘斌, 张荣, 李烨超, 谢自力, 陈鹏, 赵红, 修向前, 郑有炓 2013 激光与光电子学进展 50 020002]
[20] Chen S H, Su A C, Su C H, Chen S A 2005 Macromolecules 38 379
[21] Hu Z J, Jonas A M 2010 Soft Matter 6 21
[22] Ding G Z, Wu Y J, Weng Y Y, Zhang W D, Hu Z J 2013 Macromolecules 46 8638
[23] Du D H, Wen H Y, Hu Z J, Weng Y Y, Zhang W D 2014 Nanotechnology 25 195503
[24] Wen H Y, Zhang W D, Weng Y Y, Hu Z J 2014 RSC Adv. 4 11776
-
[1] Veinot J G C, Marks T J 2005 Accounts Chem. Res. 38 632
[2] Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104 (in Chinese) [彭静, 徐智谋, 吴小峰, 孙堂友 2013 62 036104]
[3] Nguyen T D, Hukic-Markosian G, Wang F J, Wojcik L, Li X G, Ehrenfreund E, Vardeny Z V 2010 Nat. Mater. 9 345
[4] Forrest S R 2004 Nature 428 911
[5] Hu Z J, Tian M W, Nysten B, Jonas A M 2009 Nat. Mater. 8 62
[6] Podsiadlo P, Kaushik A K, Arruda E M, Waas A M, Shim B S, Xu J D, Nandivada H, Pumplin B G, Lahann J, Ramamoorthy A, Kotov N A 2007 Science 318 80
[7] Yaman M, Khudiyev T, Ozgur E, Kanik M, Aktas O, Ozgur E O, Deniz H, Korkut E, Bayindir M 2011 Nat. Mater. 10 494
[8] Chou S Y, Krauss P R, Renstrom P J 1996 J. Vac. Sci. Technol. B 14 4129
[9] Xu Q B, Rioux R M, Dickey M D, Whitesides G M 2008 Accounts Chem. Res. 41 1566
[10] Park H J, Kang M G, Guo L J 2009 ACS Nano 3 2601
[11] Voet V S D, Pick T E, Park S M, Moritz M, Hammack A T, Urban J J, Ogletree D F, Olynick D L, Helms B A 2011 J. Am. Chem. Soc. 133 2812
[12] Zhang Z, Xu Z M, Sun T Y, He J, Xu H F, Zhang X M, Liu S Y 2013 Acta Phys. Sin. 62 168102 (in Chinese) [张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张雪明, 刘世元 2013 62 168102]
[13] Zhou W M, Niu X M, Min G Q, Song Z T, Zhang J, Liu Y B, Li X L, Zhang J P, Feng S L 2009 Microelectron. Eng. 86 2375
[14] Zhang Z, Xu Z M, Sun T Y, Xu H F, Chen C H, Peng J 2014 Acta Phys. Sin. 63 018102 (in Chinese) [张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静 2014 63 018102]
[15] Roach P, Shirtcliffe N J, Newton M I 2008 Soft Matter 4 224
[16] Xia Y, Whitesides G M 1998 Angew. Chem. Int. Edit. 37 550
[17] Chaudhury M K, Whitesides G M 1991 Langmiur 7 1013
[18] Wang D F, Zhang X D, Liu Y J, Wu C Y, Zhang C S, Wei C C, Zhao Y 2013 Chin. Phys. B 22 027801
[19] Zhuang Z, Liu B, Zhang R, Li Y C, Xie Z L, Chen P, Zhao H, Xiu X Q, Zheng Y D 2013 Laser & Optoelectronics Progress 50 020002 (in Chinese) [庄喆, 刘斌, 张荣, 李烨超, 谢自力, 陈鹏, 赵红, 修向前, 郑有炓 2013 激光与光电子学进展 50 020002]
[20] Chen S H, Su A C, Su C H, Chen S A 2005 Macromolecules 38 379
[21] Hu Z J, Jonas A M 2010 Soft Matter 6 21
[22] Ding G Z, Wu Y J, Weng Y Y, Zhang W D, Hu Z J 2013 Macromolecules 46 8638
[23] Du D H, Wen H Y, Hu Z J, Weng Y Y, Zhang W D 2014 Nanotechnology 25 195503
[24] Wen H Y, Zhang W D, Weng Y Y, Hu Z J 2014 RSC Adv. 4 11776
计量
- 文章访问数: 5588
- PDF下载量: 1103
- 被引次数: 0