搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

厚度剪切模式铌酸锂基复合材料的磁电性能优化

辛成舟 马健男 马静 南策文

引用本文:
Citation:

厚度剪切模式铌酸锂基复合材料的磁电性能优化

辛成舟, 马健男, 马静, 南策文

Optimization of magnetoelectricity in thickness shear mode LiNbO3/magnetostrictive laminated composite

Xin Cheng-Zhou, Ma Jian-Nan, Ma Jing, Nan Ce-Wen
PDF
导出引用
  • 通过弹性力学方法计算了基于厚度剪切模式的铌酸锂(LiNbO3)基磁电复合材料磁电系数与铌酸锂晶体切型、磁致伸缩材料种类、材料尺寸的关系,并讨论了两种不同复合结构边界条件对剪切磁电性能的影响.计算结果表明:(xzt)30切型铌酸锂单晶具有最大剪切压电系数dp15,制作成的复合材料具有最大剪切磁电系数E15;通过两相尺寸优化,伸缩-剪切模式Terfenol-D/LiNbO3复合材料最大剪切磁电系数为24.13 V/(cmOe),剪切-剪切模式Metglas/LiNbO3复合材料最大剪切磁电系数为11.46 V/(cmOe).实验结果与理论计算规律相符,研究结果为剪切磁电复合结构的设计、剪切模式铌酸锂切型的选择优化提供了指导,有望利用高机械品质因数Qm值的铌酸锂单晶设计高频谐振磁场探测器.
    Magnetoelectric (ME) composites have recently attracted much attention and triggered a great number of research activities, owing to their potential applications in sensors and transducers. Many researches have focused on the enhancement of ME coefficient by choosing suitable composite material and vibration mode based on the coupling between stress and strain. Besides normal stress, another vibration mode, shear mode, is further discussed as a potential high-frequency resonant device for a high frequency magnetic field detector, and it is useful to optimize the shear ME coefficient to broaden the application scope of the compositions. In this paper, an elasticity method is used to calculate ME coefficients of thickness shear mode LiNbO3/magnetostrictive laminated composites for various crystal orientations of LiNbO3, magnetostrictive materials and material sizes. The stretch-shear structure and shear-shear modes of the composite with considering the boundary condition are both discussed and further optimized. According to the structure design of stretch-shear mode composite from the literature, we design a new structure to achieve the uniform and pure shear ME effect, which changes the magnetostrictive phase on the bonding part into rigid material to avoid stretch deformation. We find that in the shear-shear ME composite, the structure should not move in the in-plane direction in order to realize the parallelogram deformation under shear stress, but should be free in the thickness direction to meet the change of thickness with shear deformation. For the stretch-shear mode Metglas/LiNbO3 [(xzlt) x/y], the shear ME coefficient E15 as a function of orientation of LiNbO3 shows that the maximum E15 is 235.1 mV/(cmOe) when x=0 and y=30. The results indicate that optimal shear ME coefficient is obtained at (xzt) 30 LiNbO3, resulting from the maximum shear piezoelectric coefficient dp15. By changing the material size in stretch-shear composite, the shear ME coefficient increases with the increase of thickness of magnetostrictive phase, because the stretch force increases with the increase of the cross-sectional area of magnetostrictive phase. The maximum values of E15 are, respectively, 24.13 V/(cmOe) in the stretch-shear mode Terfenol-D/LiNbO3 and 11.46 V/(cmOe) in the shear-shear mode Metglas/LiNbO3 by the optimization of material sizes. Experimental results are in accordance with calculation results. It is confirmed that LiNbO3 (xzt) 30 is the best choice for achieving the largest shear ME effect, and thicker Terfenol-D can help to achieve a larger ME coefficient in this stretch-shear composite. This work provides a design method to choose the structure and crystal orientation of shear LiNbO3-based ME laminated composite, which shows a prospect of applications in high-mechanical-quality factor Qm and high-frequency magnetic detectors with shear resonant devices.
      通信作者: 马静, ma-jing@mail.tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51402164)资助的课题.
      Corresponding author: Ma Jing, ma-jing@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51402164).
    [1]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [2]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [3]

    Ma J, Shi Z, Lin Y H, Nan C W 2009 Acta Phys. Sin. 58 5852 (in Chinese) [马静, 施展, 林元华, 南策文 2009 58 5852]

    [4]

    Zhou J P, Shi Z, Liu G, He H C, Nan C W 2006 Acta Phys. Sin. 55 3766 (in Chinese) [周剑平, 施展, 刘刚, 何泓材, 南策文 2006 55 3766]

    [5]

    Shi Z, Nan C W 2004 Acta Phys. Sin. 53 2766 (in Chinese) [施展, 南策文 2004 53 2766]

    [6]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776

    [7]

    Li P, Wen Y M, Bian L X 2007 Appl. Phys. Lett. 90 022503

    [8]

    Bi K, Wang Y G, Pan D A, Wu W 2011 J. Mater. Res. 26 2707

    [9]

    Li L, Chen X M, Zhu H Y 2012 J. Alloys Compd. 526 116

    [10]

    Zeng L Y, Zhou M H, Bi K, Lei M 2016 J. Appl. Phys. 119 034102

    [11]

    Zhai J Y, Xing Z P, Dong S X, Li J F, Viehland D 2008 J. Am. Ceram. Soc. 91 351

    [12]

    Chashin D V, Fetisov Y K, Tafintseva E V, Srinivasan G 2008 Solid State Commun. 148 55

    [13]

    Wen Y M, Wang D, Li P, Chen L, Wu Z Y 2011 Acta Phys. Sin. 60 097506 (in Chinese) [文玉梅, 王东, 李平, 陈蕾, 吴治峄 2011 60 097506]

    [14]

    Weis R S, Gaylord T K 1985 Appl. Phys. A 37 191

    [15]

    Wang Y, Jiang Y J 2003 Opt. Mater. 23 403

    [16]

    Kuo H Y, Slinger A, Bhattacharya K 2010 Smart Mater. Struct. 19 125010

    [17]

    Ma J, Shi Z, Nan C W 2007 Adv. Mater. 19 2571

    [18]

    Bi K, Ai Q W, Yang L, Wu W, Wang Y G 2011 Acta Phys. Sin. 60 057503 (in Chinese) [毕科, 艾迁伟, 杨路, 吴玮, 王寅岗 2011 60 057503]

    [19]

    Wan H, Xie L Q, Wu X Z, Liu X C 2005 Acta Phys. Sin. 54 3872 (in Chinese) [万红, 谢立强, 吴学忠, 刘希从 2005 54 3872]

    [20]

    Bichurin M I, Petrov R V, Petrov V M 2013 Appl. Phys. Lett. 103 092902

    [21]

    Wang Y J, Hasanyan D, Li J F, Viehland D, Luo H S 2012 Appl. Phys. Lett. 100 202903

    [22]

    Zhang J T, Li P, Wen Y M, He W, Yang A C, Lu C J 2014 Sens. Actuator A: Phys. 214 149

    [23]

    Liu G X, Zhang C L, Dong S X 2014 J. Appl. Phys. 116 074104

    [24]

    Lu M C, Mei L, Jeong D Y, Xiang J, Xie H Q, Zhang Q M 2015 Appl. Phys. Lett. 106 112905

    [25]

    Meeks S W, Hill J C 1983 J. Appl. Phys. 54 6584

  • [1]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [2]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [3]

    Ma J, Shi Z, Lin Y H, Nan C W 2009 Acta Phys. Sin. 58 5852 (in Chinese) [马静, 施展, 林元华, 南策文 2009 58 5852]

    [4]

    Zhou J P, Shi Z, Liu G, He H C, Nan C W 2006 Acta Phys. Sin. 55 3766 (in Chinese) [周剑平, 施展, 刘刚, 何泓材, 南策文 2006 55 3766]

    [5]

    Shi Z, Nan C W 2004 Acta Phys. Sin. 53 2766 (in Chinese) [施展, 南策文 2004 53 2766]

    [6]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776

    [7]

    Li P, Wen Y M, Bian L X 2007 Appl. Phys. Lett. 90 022503

    [8]

    Bi K, Wang Y G, Pan D A, Wu W 2011 J. Mater. Res. 26 2707

    [9]

    Li L, Chen X M, Zhu H Y 2012 J. Alloys Compd. 526 116

    [10]

    Zeng L Y, Zhou M H, Bi K, Lei M 2016 J. Appl. Phys. 119 034102

    [11]

    Zhai J Y, Xing Z P, Dong S X, Li J F, Viehland D 2008 J. Am. Ceram. Soc. 91 351

    [12]

    Chashin D V, Fetisov Y K, Tafintseva E V, Srinivasan G 2008 Solid State Commun. 148 55

    [13]

    Wen Y M, Wang D, Li P, Chen L, Wu Z Y 2011 Acta Phys. Sin. 60 097506 (in Chinese) [文玉梅, 王东, 李平, 陈蕾, 吴治峄 2011 60 097506]

    [14]

    Weis R S, Gaylord T K 1985 Appl. Phys. A 37 191

    [15]

    Wang Y, Jiang Y J 2003 Opt. Mater. 23 403

    [16]

    Kuo H Y, Slinger A, Bhattacharya K 2010 Smart Mater. Struct. 19 125010

    [17]

    Ma J, Shi Z, Nan C W 2007 Adv. Mater. 19 2571

    [18]

    Bi K, Ai Q W, Yang L, Wu W, Wang Y G 2011 Acta Phys. Sin. 60 057503 (in Chinese) [毕科, 艾迁伟, 杨路, 吴玮, 王寅岗 2011 60 057503]

    [19]

    Wan H, Xie L Q, Wu X Z, Liu X C 2005 Acta Phys. Sin. 54 3872 (in Chinese) [万红, 谢立强, 吴学忠, 刘希从 2005 54 3872]

    [20]

    Bichurin M I, Petrov R V, Petrov V M 2013 Appl. Phys. Lett. 103 092902

    [21]

    Wang Y J, Hasanyan D, Li J F, Viehland D, Luo H S 2012 Appl. Phys. Lett. 100 202903

    [22]

    Zhang J T, Li P, Wen Y M, He W, Yang A C, Lu C J 2014 Sens. Actuator A: Phys. 214 149

    [23]

    Liu G X, Zhang C L, Dong S X 2014 J. Appl. Phys. 116 074104

    [24]

    Lu M C, Mei L, Jeong D Y, Xiang J, Xie H Q, Zhang Q M 2015 Appl. Phys. Lett. 106 112905

    [25]

    Meeks S W, Hill J C 1983 J. Appl. Phys. 54 6584

  • [1] 刘励强, 苏伟伦, 刘峻铭, 邹娱, 洪丽红, 李志远. 应用于1064 nm倍频实验的啁啾周期极化铌酸锂晶体的结构设计与角度鲁棒性测试.  , 2024, 73(17): 174204. doi: 10.7498/aps.73.20240778
    [2] 余桂芳, 李志浩, 肖天琦, 冯田峰, 周晓祺. 基于薄膜铌酸锂的模式色散相位匹配单光子源.  , 2023, 72(15): 154204. doi: 10.7498/aps.72.20230743
    [3] 熊霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇.  , 2023, 72(23): 234201. doi: 10.7498/aps.72.20231295
    [4] 李铭洲, 李志远. 应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟.  , 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [5] 辛成舟, 马健男, 马静, 南策文. 伸缩-剪切模式自偏置铌酸锂基复合材料的磁电性能和高频谐振响应.  , 2018, 67(15): 157502. doi: 10.7498/aps.67.20180810
    [6] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱.  , 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [7] 师丽红, 阎文博, 申绪男, 陈贵锋, 陈洪建, 乔会宾, 贾芳芳, 林爱调. 掺铁铌酸锂晶体中光致散射的锂组分和温度依赖关系研究.  , 2012, 61(23): 234207. doi: 10.7498/aps.61.234207
    [8] 师丽红, 阎文博. 纯铌酸锂晶体红外光谱的低温研究.  , 2009, 58(7): 4987-4991. doi: 10.7498/aps.58.4987
    [9] 齐继伟, 李玉栋, 许京军, 崔国新, 孔凡磊, 孙 骞. 铌酸锂晶体中的磁光折变效应研究.  , 2007, 56(12): 7015-7022. doi: 10.7498/aps.56.7015
    [10] 闫卫国, 陈云琳, 王栋栋, 郭 娟, 张光寅. 掺镁铌酸锂亚微米结构畴反转的研究.  , 2006, 55(11): 5855-5858. doi: 10.7498/aps.55.5855
    [11] 姚江宏, 陈亚辉, 颜博霞, 邓浩亮, 孔勇发, 陈绍林, 许京军, 张光寅. 掺镁铌酸锂晶体亚微米畴结构特性研究.  , 2004, 53(12): 4369-4372. doi: 10.7498/aps.53.4369
    [12] 高垣梅, 刘思敏, 郭 儒, 黄春福, 汪大云. Y向切割掺杂铌酸锂晶体中的光耦合.  , 2004, 53(9): 2958-2963. doi: 10.7498/aps.53.2958
    [13] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 准位相匹配铌酸锂波导倍频特性分析与优化设计.  , 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
    [14] 冯少新, 李宝会, 金庆华, 郭振亚, 丁大同. LiNbO3晶体中离子间相互作用势的经验参量的确定.  , 2000, 49(12): 2433-2436. doi: 10.7498/aps.49.2433
    [15] 汪 进, 杨 昆, 金 婵. 掺镁铌酸锂晶体结构的研究.  , 1999, 48(6): 1103-1106. doi: 10.7498/aps.48.1103
    [16] 刘建军, 张万林, 张光寅. 掺镁铌酸锂晶体的缺陷结构及其结晶化学分析.  , 1996, 45(11): 1852-1858. doi: 10.7498/aps.45.1852
    [17] 刘劲松, 梁昌洪, 安毓英, 李铭华, 金婵, 徐玉恒, 吴仲康. 鈰铕铌酸锂的双光束耦合异常温度特性与结构相变.  , 1994, 43(9): 1455-1459. doi: 10.7498/aps.43.1455
    [18] 冯锡淇, 应继锋, 王锦昌, 刘建成. OH-吸收带作为铌酸锂晶体缺陷结构的探针.  , 1988, 37(12): 2062-2067. doi: 10.7498/aps.37.2062
    [19] 冯国光, 杨翠英, 周玉清, 唐棣生. 结合会聚束电子衍射和高分辨电子显微术来测定十四铌酸锂的结构.  , 1984, 33(11): 1581-1585. doi: 10.7498/aps.33.1581
    [20] 晶体学室铌酸盐晶体研究组. 铌酸锶钠锂单晶的生长.  , 1979, 28(2): 229-233. doi: 10.7498/aps.28.229
计量
  • 文章访问数:  6570
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-08
  • 修回日期:  2016-12-21
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map