-
1.8—2.0 μm波段包含大量水的吸收谱线, 且吸收强度高于传统的1.3—1.5 μm波段, 在水的吸收光谱测量中具有很大的应用潜力. 超光谱吸收测量技术可以利用宽带范围内的大量吸收谱线来实现物理参数的反演, 与传统的单/双谱线的可调谐二极管吸收光谱技术相比具有更好的稳定性、准确性和更宽的使用范围. 宽带调谐的窄线宽激光光源是实现超光谱吸收测量的关键器件. 利用可调谐法布里-珀罗(FP)腔和光纤可饱和吸收体, 搭建了宽带调谐的窄线宽2 μm光纤激光器. 利用掺铥光纤的再吸收特性, 通过合理设计增益光纤长度, 得到了在1910—1970 nm约60 nm的光谱范围内连续可调的激光输出, 且激光器静态线宽小于0.1 nm, 能够满足水的超光谱吸收测量实验的要求. 利用该激光器分别对空气和酒精火焰中水在2 μm波段的宽带吸收光谱进行了测量. 在常温空气中, 该光源可以在1910—1965 nm的光谱范围内有效分辨40余条水的吸收谱线; 在酒精火焰中, 该光源可以在1950—1970 nm的光谱范围内有效分辨近50条水的吸收谱线. 通过与HITRAN2016数据库的比对反演得到激光器在动态扫描过程中的线宽约为0.06 nm, 与静态测试结果相近; 反演得到的空气温度约为298 K, 空气中水的摩尔分数约为2%, 与温湿度计测量结果一致; 反演得到的酒精火焰温度约为1220 K, 与热电偶测量结果较为接近.
-
关键词:
- 超光谱吸收 /
- 可调谐二极管激光吸收光谱 /
- 光纤可饱和吸收体 /
- 掺铥光纤激光器
The 1.8–2.0 μm waveband contains abundant absorption lines of water, which are much stronger than those in the traditional 1.3–1.5 μm waveband, exhibiting huge potentials for absorption spectrum applications of water. In the hyperspectral absorption spectrum, physical parameters of the target molecule can be derived from lots of absorption lines within a broadband scanning range, achieving the results more robust, accurate and versatile than the results from the conventional tunable diode laser absorption spectrum in which only one or two absorption lines are used. The key to hyperspectral absorption is the development of broadband tunable, narrow linewidth laser sources emitting in the wavelength range of interest. With a tunable fiber FP filter and a fiber saturable absorber, a Tm-doped fiber laser is established, featuring broadband tenability and narrow linewidth. Taking advantage of the re-absorption characteristics of Tm-doped silica fibers, a wavelength tuning range covering 60 nm from 1910–1970 nm is obtained through the appropriately designing of the active fiber length. The measured laser linewidth at steady state is smaller than 0.1 nm, which is suitable for water absorption spectrum. Hyperspectral absorption measurements of water in air and alcohol flame are conducted. In room-temperature air, more than 40 absorption lines are recognized within a tuning range of 1910–1965 nm, while, in alcohol flame, the number of detected lines reaches about 50. Comparison with the HITRAN2016 database gives a laser linewidth of about 0.06 nm which is very close to the static linewidth measured by an OSA. The temperature of the air is derived to be 298 K with a water mole fraction of about 2%, which is consistent with the measurement of the hygrothermograph. And the calculation indicates an alcohol flame temperature of about 1220 K, which is very close to the measurement result of the thermocouple.-
Keywords:
- hyperspectral absorption /
- tunable diode laser absorption spectroscopy /
- fiber saturable absorber /
- Tm-doped fiber laser
[1] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energ. Combust. Sci. 60 132
[2] Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta B 106 45Google Scholar
[3] Hanson R K, Davidson D F 2014 Prog. Energ. Combust. Sci. 44 103Google Scholar
[4] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[5] Regalia L, Oudot C, Mikhailenko S, Wang L, Thomas X, Jenouvrier A, Von der Heyden P 2014 J. Quant. Spectrosc. Radiat. Transfer 136 119Google Scholar
[6] Barber R J, Tennyson J, Harris G J, Tolchenov R N 2006 Mon. Not. R. Astron. Soc. 368 1087Google Scholar
[7] Liu X, Zhou X, Jeffries J B, Hanson R K 2007 J. Quant. Spectrosc. Radiat. Transfer 103 565Google Scholar
[8] 许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰 2012 61 234204Google Scholar
Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H, Kan R F 2012 Acta Phys. Sin. 61 234204Google Scholar
[9] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军 2012 61 034214Google Scholar
Zhang L, Liu J G, Kan R F, Liu W Q, Zhang Y J, Xu Z Y, Chen J 2012 Acta Phys. Sin. 61 034214Google Scholar
[10] 陶波, 胡志云, 王晟, 叶景峰, 赵新艳, 叶锡生 2014 工程热 35 4Google Scholar
Tao B, Hu Z Y, Wang S, Ye J F, Zhao X Y, Ye X S 2014 J. Eng. Thermophys. 35 4Google Scholar
[11] Wang F, Wu Q, Huang Q, Zhang H, Yan J, Cen K 2015 Opt. Commun. 346 53Google Scholar
[12] Hunsmann S, Wunderle K, Wagner S, Rascher U, Schurr U, Ebert V 2008 Appl. Phys. B 92 393Google Scholar
[13] Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert V 2012 Appl. Phys. B 109 521Google Scholar
[14] Caswell A W, Kraetschmer T, Rein K, Sanders S T, Roy S, Shouse D T, Gord J R 2010 Appl. Opt. 49 4963Google Scholar
[15] Li F, Yu X, Gu H, Li Z, Zhao Y, Ma L, Chen L, Chang X 2011 Appl. Opt. 50 6697Google Scholar
[16] 张步强, 徐振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰 2019 68 233301Google Scholar
Zhang B Q, Xu Z Y, Liu J G, Yao L, Ruan J, Hu J Y, Xia H H, Nie W, Yuan F, Kan R F 2019 Acta Phys. Sin. 68 233301Google Scholar
[17] Huber R, Wojtkowski M, Taira K, Fujimoto J G 2005 Opt. Express 13 3513Google Scholar
[18] Huber R, Wojtkowski M, and Fujimoto J G 2006 Opt. Express 14 3225Google Scholar
[19] Kranendonk L A, An X, Caswell A W, Herold R E, Sanders S T, Huber R, Fujimoto J G, Okura Y, Urata Y 2007 Opt. Express 15 15115Google Scholar
[20] Caswell A W, Roy S, An X, Sanders S T, Schauer F R, Gord J R 2013 Appl. Opt. 52 2893Google Scholar
[21] Ma L, Li X, Sanders S T, Caswell A W, Roy S R, Plemmons D H, Gord J R 2013 Opt. Express 21 1152Google Scholar
[22] Zhou X, Liu X, Jeffries J B, Hanson R K 2003 Meas. Sci. Technol. 14 1459Google Scholar
[23] 符鹏飞, 超星, 侯凌云, 王振海, 孟庆慧 2019 工程热 40 2176Google Scholar
Fu P F, Chao X, Hou L Y, Wang Z H, Meng Q H 2019 J. Eng. Thermophys. 40 2176Google Scholar
[24] 陶蒙蒙, 陶波, 余婷, 王振宝, 冯国斌, 叶锡生 2016 红外与激光工程 45 1205002Google Scholar
Tao M M, Tao B, Yu T, Wang Z B, Feng G B, Ye X S 2016 Infrar. Laser Eng. 45 1205002Google Scholar
[25] Tao M, Tao B, Hu Z, Feng G, Ye X, Zhao J 2017 Opt. Express 25 32386Google Scholar
[26] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军 2020 69 034205Google Scholar
Tao M M, Tao B, Ye J F, Shen Y L, Huang K, Ye X S, Zhao J 2020 Acta Phys. Sin. 69 034205Google Scholar
[27] Jackson S D, King T A 1999 J. Lightwave Tehcnol. 17 948Google Scholar
[28] Jackson S D, King T A 1998 Opt. Lett. 23 1462Google Scholar
[29] Schulze G, Jirasek A, Yu M M L, Lim A, Turner R F B, Blades M W 2005 Appl. Spectrosc. 59 545Google Scholar
-
图 3 宽带可调谐窄线宽掺铥光纤激光器光路结构图 WDM, 波分复用器; TDF, 掺铥光纤; ISO, 隔离器; FP filter, 可调谐FP滤波器; OC, 输出耦合器; FSA, 光纤可饱和吸收体
Fig. 3. Optical path diagram of the broadband tunable narrow linewidth Tm-doped fiber laser: WDM, wavelength division multiplexer; TDF, Tm-doped fiber; ISO, isolator; FP filter, tunable FP filter; OC, output coupler; FSA, fiber saturable absorber.
图 11 吸收光谱实验数据一阶导数与不同激光线宽下的理论模拟数据一阶导数对比 (a) 不同激光线宽下的均方根残差分布; (b) 1941 nm附近的实测数据对比
Fig. 11. Comparison between first derivatives of the measured and theoretical absorption spectra under different laser linewidths: (a) RMSE distribution at different laser linewidths; (b) comparison of measured data around 1941 nm.
-
[1] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energ. Combust. Sci. 60 132
[2] Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta B 106 45Google Scholar
[3] Hanson R K, Davidson D F 2014 Prog. Energ. Combust. Sci. 44 103Google Scholar
[4] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[5] Regalia L, Oudot C, Mikhailenko S, Wang L, Thomas X, Jenouvrier A, Von der Heyden P 2014 J. Quant. Spectrosc. Radiat. Transfer 136 119Google Scholar
[6] Barber R J, Tennyson J, Harris G J, Tolchenov R N 2006 Mon. Not. R. Astron. Soc. 368 1087Google Scholar
[7] Liu X, Zhou X, Jeffries J B, Hanson R K 2007 J. Quant. Spectrosc. Radiat. Transfer 103 565Google Scholar
[8] 许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰 2012 61 234204Google Scholar
Xu Z Y, Liu W Q, Liu J G, He J F, Yao L, Ruan J, Chen J Y, Li H, Yuan S, Geng H, Kan R F 2012 Acta Phys. Sin. 61 234204Google Scholar
[9] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军 2012 61 034214Google Scholar
Zhang L, Liu J G, Kan R F, Liu W Q, Zhang Y J, Xu Z Y, Chen J 2012 Acta Phys. Sin. 61 034214Google Scholar
[10] 陶波, 胡志云, 王晟, 叶景峰, 赵新艳, 叶锡生 2014 工程热 35 4Google Scholar
Tao B, Hu Z Y, Wang S, Ye J F, Zhao X Y, Ye X S 2014 J. Eng. Thermophys. 35 4Google Scholar
[11] Wang F, Wu Q, Huang Q, Zhang H, Yan J, Cen K 2015 Opt. Commun. 346 53Google Scholar
[12] Hunsmann S, Wunderle K, Wagner S, Rascher U, Schurr U, Ebert V 2008 Appl. Phys. B 92 393Google Scholar
[13] Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert V 2012 Appl. Phys. B 109 521Google Scholar
[14] Caswell A W, Kraetschmer T, Rein K, Sanders S T, Roy S, Shouse D T, Gord J R 2010 Appl. Opt. 49 4963Google Scholar
[15] Li F, Yu X, Gu H, Li Z, Zhao Y, Ma L, Chen L, Chang X 2011 Appl. Opt. 50 6697Google Scholar
[16] 张步强, 徐振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰 2019 68 233301Google Scholar
Zhang B Q, Xu Z Y, Liu J G, Yao L, Ruan J, Hu J Y, Xia H H, Nie W, Yuan F, Kan R F 2019 Acta Phys. Sin. 68 233301Google Scholar
[17] Huber R, Wojtkowski M, Taira K, Fujimoto J G 2005 Opt. Express 13 3513Google Scholar
[18] Huber R, Wojtkowski M, and Fujimoto J G 2006 Opt. Express 14 3225Google Scholar
[19] Kranendonk L A, An X, Caswell A W, Herold R E, Sanders S T, Huber R, Fujimoto J G, Okura Y, Urata Y 2007 Opt. Express 15 15115Google Scholar
[20] Caswell A W, Roy S, An X, Sanders S T, Schauer F R, Gord J R 2013 Appl. Opt. 52 2893Google Scholar
[21] Ma L, Li X, Sanders S T, Caswell A W, Roy S R, Plemmons D H, Gord J R 2013 Opt. Express 21 1152Google Scholar
[22] Zhou X, Liu X, Jeffries J B, Hanson R K 2003 Meas. Sci. Technol. 14 1459Google Scholar
[23] 符鹏飞, 超星, 侯凌云, 王振海, 孟庆慧 2019 工程热 40 2176Google Scholar
Fu P F, Chao X, Hou L Y, Wang Z H, Meng Q H 2019 J. Eng. Thermophys. 40 2176Google Scholar
[24] 陶蒙蒙, 陶波, 余婷, 王振宝, 冯国斌, 叶锡生 2016 红外与激光工程 45 1205002Google Scholar
Tao M M, Tao B, Yu T, Wang Z B, Feng G B, Ye X S 2016 Infrar. Laser Eng. 45 1205002Google Scholar
[25] Tao M, Tao B, Hu Z, Feng G, Ye X, Zhao J 2017 Opt. Express 25 32386Google Scholar
[26] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军 2020 69 034205Google Scholar
Tao M M, Tao B, Ye J F, Shen Y L, Huang K, Ye X S, Zhao J 2020 Acta Phys. Sin. 69 034205Google Scholar
[27] Jackson S D, King T A 1999 J. Lightwave Tehcnol. 17 948Google Scholar
[28] Jackson S D, King T A 1998 Opt. Lett. 23 1462Google Scholar
[29] Schulze G, Jirasek A, Yu M M L, Lim A, Turner R F B, Blades M W 2005 Appl. Spectrosc. 59 545Google Scholar
计量
- 文章访问数: 4918
- PDF下载量: 106
- 被引次数: 0