-
High-precision distance measurement in a long range is critical for many advanced applications, such as satellite formation flying, free space optical communication and large scale machining. A 52 m absolute distance measurement in free space based on time of flight of femtosecond laser is demonstrated. The timing offset between target-reflected and the reference pulses is precisely characterized by balanced optical cross-correlation method. The balanced cross correlation signal is used for the feedback control of the cavity length and tightly locks the distance under test to multiple of pulse separation. As a result, the time of flight of the target-reflected pulse is determined by the repetition rate of the femtosecond laser, which effectively avoids the loss of timing resolution caused by direct access of pulse time-of-flight from photo-detection. In the experiment, a Yb -doped high repetition rate mode-locked fiber laser working at 1.04 μm is used as a femtosecond laser source, and a measurement precision of 12 nm is achieved in an average time of one second.
-
Keywords:
- balanced optical cross-correlation /
- femtosecond /
- distance measurement /
- satellite formation flying
[1] Smullin L D, Fiocco G 1962 Nature 194 1267
[2] Bender P L, Currie D G, Poultney S K, Alley C O, Dicke R H, Wilkinson D T, Eckhardt D H, Faller J E, Kaula W M, Mulholland J D, Plotkin H H, Silverberg E C, Williams J G 1973 Science 182 229
[3] Bobroff N 1993 Meas. Sci. and Tech. 4 907
[4] Wise F W, Chong A, Renninger W H 2008 Laser Photon. Rev. 2 58
[5] Song Y J, Hu M L, Liu B W, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 6425 (in Chinese) [宋有建, 胡明列, 刘博文, 柴路, 王清月 2008 57 6425]
[6] Song Y J, Hu M L, Liu Q W, Li J Y, Chen W, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 5045 (in Chinese) [宋有建, 胡明列, 刘庆文, 李金延, 陈伟, 柴路, 王清月 2008 57 5045]
[7] Cao S Y, Zhang Z G, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 2971 (in Chinese) [曹士英, 张志刚, 柴路, 王清月 2008 57 2971]
[8] Diddams S A 2010 J. Opt. Soc. Am. B 27 B51
[9] Coddington I, Swann W C, NenadovicL, Newbury N R 2009 Nat. Photon 3 351
[10] Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon 4 716
[11] van den Berg S A, Persijn S T, Kok G J P, Zeitouny M G, Bhattacharya N 2012 Physical Review Letters 108 183901
[12] Schibli T R, Kim J, Kuzucu O, Gopinath J T, Tandon S N, Petrich G S, Kolodziejski L A, Fujimoto J G, Ippen E P, Kaertner F X 2003 Opt. Lett. 28 947
[13] Kim J, Chen J, Zhang Z, Wong F N C, Kärtner F X, Loehl F, Schlarb H 2007 Opt. Lett. 32 1044
[14] Hyun S, Kim Y J, Kim Y, Jin J, Kim S W 2009 Measurement Science and Technology 20 095302
-
[1] Smullin L D, Fiocco G 1962 Nature 194 1267
[2] Bender P L, Currie D G, Poultney S K, Alley C O, Dicke R H, Wilkinson D T, Eckhardt D H, Faller J E, Kaula W M, Mulholland J D, Plotkin H H, Silverberg E C, Williams J G 1973 Science 182 229
[3] Bobroff N 1993 Meas. Sci. and Tech. 4 907
[4] Wise F W, Chong A, Renninger W H 2008 Laser Photon. Rev. 2 58
[5] Song Y J, Hu M L, Liu B W, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 6425 (in Chinese) [宋有建, 胡明列, 刘博文, 柴路, 王清月 2008 57 6425]
[6] Song Y J, Hu M L, Liu Q W, Li J Y, Chen W, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 5045 (in Chinese) [宋有建, 胡明列, 刘庆文, 李金延, 陈伟, 柴路, 王清月 2008 57 5045]
[7] Cao S Y, Zhang Z G, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 2971 (in Chinese) [曹士英, 张志刚, 柴路, 王清月 2008 57 2971]
[8] Diddams S A 2010 J. Opt. Soc. Am. B 27 B51
[9] Coddington I, Swann W C, NenadovicL, Newbury N R 2009 Nat. Photon 3 351
[10] Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon 4 716
[11] van den Berg S A, Persijn S T, Kok G J P, Zeitouny M G, Bhattacharya N 2012 Physical Review Letters 108 183901
[12] Schibli T R, Kim J, Kuzucu O, Gopinath J T, Tandon S N, Petrich G S, Kolodziejski L A, Fujimoto J G, Ippen E P, Kaertner F X 2003 Opt. Lett. 28 947
[13] Kim J, Chen J, Zhang Z, Wong F N C, Kärtner F X, Loehl F, Schlarb H 2007 Opt. Lett. 32 1044
[14] Hyun S, Kim Y J, Kim Y, Jin J, Kim S W 2009 Measurement Science and Technology 20 095302
Catalog
Metrics
- Abstract views: 10826
- PDF Downloads: 1444
- Cited By: 0