Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of thermodynamic progress of silicon ablated by nanosecond uv repetitive pulse laser

Bao Ling-Dong Han Jing-Hua Duan Tao Sun Nian-Chun Gao Xiang Feng Guo-Ying Yang Li-Ming Niu Rui-Hua Liu Quan-Xi

Citation:

Investigation of thermodynamic progress of silicon ablated by nanosecond uv repetitive pulse laser

Bao Ling-Dong, Han Jing-Hua, Duan Tao, Sun Nian-Chun, Gao Xiang, Feng Guo-Ying, Yang Li-Ming, Niu Rui-Hua, Liu Quan-Xi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The blind holes processing experiment is conducted on the silicon under the radiation of a 355 nm nanosecond UV repetitive pulse laser. With the increase of the laser pulse number, the variations of the silicon morphology,the depth and aperture of the blind holes are observed, and the thermodynamic process of UV laser irradiating silicon is analyzed. The results show that the formation of the blind silicon hole in the laser ablation process is due to the interaction between thermal effect and force effect. Thermal effect results in fusion, vaporization and even producing laser plasma by ionization in silicon, which is essential to the removal of the material. The molten material is compressed by the plasma shock wave and the expansion of the high-temperature gaseous material,and then ejection outward, which will benefit the further ablation; the force propagates along the laser transmission direction,perpendicular to the silicon surface, so the removal parts are distributed mainly along the depth direction of the hole, reaching a high aperture ratio, which is up to 8:1 in our experiments. In addition, the laser-induced plasma also prevents the effect of laser on the target surface, and with the increase of hole depth, laser defocusing occurs. The two aspects finally restrict the ablation depth. The results shows that in the process of laser irradiation on the material, the ablation efficiency is much higher when the former 100 pulses arrived than the sequent laser pulses.
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No.60890203), the Open Foundation of Laboratory for Extreme Conditions Matter Properties (Grant No.11zxjk08) and the Research fund for the Young Teachers of Sichuan University, China (Grant No.2009SCU11008).
    [1]

    Norton J F Google Patents 3265855 [1966-08-09]

    [2]

    Young D J 2010 VLSI Design Automation and Test (VLSI-DAT), 2010 International Symposium on Salt Lake City, UT, USA, April 26—29, 2010, p130

    [3]

    Oita T 2009 Ultrasonics Symposium (IUS), 2009 IEEE International Tokyo, Japan, September 20—23, 2009, p1173

    [4]

    Bäuerle D 2011 Laser processing and chemistry (2nd Ed.) (Berlin and New York: Springer) p57

    [5]

    Steen W M, Mazumder J 1998 Laser material processing (2nd Ed.) (London and New York: Springer) p121

    [6]

    Simon P, Ihlemann J 1996 Appl. Phys. A: Mater. Sci. Proc. 63 505

    [7]

    Niino H, Kawaguchi Y, Sato T, Narazaki A, Gumpenberger T, Kurosaki R 2006 J. Laser Micro/Nanoeng 1 39

    [8]

    Pfleging W, Bernauer W, Hanemann T, Torge M 2002 Microsyst. Technol. 9 67

    [9]

    Zhu L H 2008 China construction dynamic: the sun energy 35 (in Chinese) [朱黎辉 2008 中国建设动态: 阳光能源 35]

    [10]

    Landgraf R, Rieske R, Danilewsky A,Wolter K J 2008 Electronics System-Integration Technology Conference Dresden, Dresden, Sept 1—4, 2008 p1023

    [11]

    Lee Y H, Choi K J 2010 Int. J. Pres. Eng. Man. 11 501

    [12]

    Brandi F, Burdet N, Carzino R, Diaspro A 2010 Opt. Express 18 23488

    [13]

    Herrmann R, Gerlach J, Campbell E 1998 Appl. Phys. A: Mater. Sci. Proc. 66 35

    [14]

    Allman 1994 Laser-beam interactions with materials physical principles and applications (Beijing: Science Press) p55 (in Chinese) [奥尔曼 1994 激光束与材料相互作用的物理原理及应用 (北京:科学出版社) 第55页]

    [15]

    Wakaki M, Kudo K,Shibuya T 2007 Physical properties and data of optical materials (1st Ed.) (California: CRC press) p86

    [16]

    Tao S, Wu B, Zhou Y, Gao Y 2009 J. Appl. Phys. 106 123505

    [17]

    Weber M J 2003 Handbook Of Optical Materials (1st Ed.) (California: CRC press) p145

    [18]

    D'Anna E, Luby S, Luches A, Majkova E, Martino M 1993 Appl. Phys. A: Mater. Sci. Proc. 56 429

    [19]

    Zhang L, Ni X W, Lu J, Liu J, Dai G 2011 Opt. Precis. Eng. 19 437 (in Chinese) [张梁, 倪晓武, 陆建, 刘剑, 戴罡 2011 光学精密工程 19 437]

    [20]

    Kodama R, Norreys P, Mima K, Dangor A, Evans R, Fujita H, Kitagawa Y, Krusheinick K, Miyakoshi T, Miyanaga N 2001 Nature 412 798

    [21]

    Durfee C G, Lynch J, Milchberg H 1995 Phys. Rev. E 51 2368

    [22]

    Phipps C, Turner T, Harrison R, York G, Osborne W, Anderson G, Corlis X, Haynes L, Steele H, Spicochi K 1988 J. Appl. Phys. 64 1083

    [23]

    Ren J 2005 Ph. D. Dissertation (California: stanford university)

    [24]

    Lu J Ni X W 1996Laser interactions with materials physics (1st Ed.) (Beijing: China Machine Press) p69 (in Chinese) [陆建, 倪晓武 1996 激光与材料相互作用物理学(北京:机械工业出版社) 第69页]

    [25]

    Ancona A, Sibillano T, Lugará P M, Gonnella G, Pascazio G, Maffione D 2006 J. Phys. D: Appl. Phys. 39 563

    [26]

    Dykhno I, Ignatchenko G, Bogachenkov E European Patent EP20000943390 [2002-06-12]

    [27]

    Armon E, Zvirin Y, Laufer G, Solan A 1989 J. Appl. Phys. 65 4995

    [28]

    Park K W, Na S J 2010 Appl. Surf. Sci. 256 2392

    [29]

    Modest M F 2006 Journal of Heat Transfer 128 653

    [30]

    Tao S, Wu B, Zhou Y, Gao Y 2009 J. Appl. Phys. 106 123507

    [31]

    Chen J K, Beraun J E 2003 J. Opt. A: Pure Appl. Op. 5 168

    [32]

    Pakhomov A, Thompson M, Gregory D 2003 J. Phys. D: Appl. Phys. 36 2067

    [33]

    Schaffer C B, Brodeur A, Mazur E 2001 Meas. Sci. Technol. 12 1784

    [34]

    Ngoi B, Venkatakrishnan K, Lim E, Tan B, Koh L 2001 Opt. Laser. Eng. 35 361

    [35]

    Zhang N, Zhu X, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602

    [36]

    Perez D, Lewis L 2004 Appl. Phys. A: Mater. 79 987

    [37]

    Lorazo P, Lewis L J, Meunier M 2003 Phys. Rev. Lett. 91 225502

  • [1]

    Norton J F Google Patents 3265855 [1966-08-09]

    [2]

    Young D J 2010 VLSI Design Automation and Test (VLSI-DAT), 2010 International Symposium on Salt Lake City, UT, USA, April 26—29, 2010, p130

    [3]

    Oita T 2009 Ultrasonics Symposium (IUS), 2009 IEEE International Tokyo, Japan, September 20—23, 2009, p1173

    [4]

    Bäuerle D 2011 Laser processing and chemistry (2nd Ed.) (Berlin and New York: Springer) p57

    [5]

    Steen W M, Mazumder J 1998 Laser material processing (2nd Ed.) (London and New York: Springer) p121

    [6]

    Simon P, Ihlemann J 1996 Appl. Phys. A: Mater. Sci. Proc. 63 505

    [7]

    Niino H, Kawaguchi Y, Sato T, Narazaki A, Gumpenberger T, Kurosaki R 2006 J. Laser Micro/Nanoeng 1 39

    [8]

    Pfleging W, Bernauer W, Hanemann T, Torge M 2002 Microsyst. Technol. 9 67

    [9]

    Zhu L H 2008 China construction dynamic: the sun energy 35 (in Chinese) [朱黎辉 2008 中国建设动态: 阳光能源 35]

    [10]

    Landgraf R, Rieske R, Danilewsky A,Wolter K J 2008 Electronics System-Integration Technology Conference Dresden, Dresden, Sept 1—4, 2008 p1023

    [11]

    Lee Y H, Choi K J 2010 Int. J. Pres. Eng. Man. 11 501

    [12]

    Brandi F, Burdet N, Carzino R, Diaspro A 2010 Opt. Express 18 23488

    [13]

    Herrmann R, Gerlach J, Campbell E 1998 Appl. Phys. A: Mater. Sci. Proc. 66 35

    [14]

    Allman 1994 Laser-beam interactions with materials physical principles and applications (Beijing: Science Press) p55 (in Chinese) [奥尔曼 1994 激光束与材料相互作用的物理原理及应用 (北京:科学出版社) 第55页]

    [15]

    Wakaki M, Kudo K,Shibuya T 2007 Physical properties and data of optical materials (1st Ed.) (California: CRC press) p86

    [16]

    Tao S, Wu B, Zhou Y, Gao Y 2009 J. Appl. Phys. 106 123505

    [17]

    Weber M J 2003 Handbook Of Optical Materials (1st Ed.) (California: CRC press) p145

    [18]

    D'Anna E, Luby S, Luches A, Majkova E, Martino M 1993 Appl. Phys. A: Mater. Sci. Proc. 56 429

    [19]

    Zhang L, Ni X W, Lu J, Liu J, Dai G 2011 Opt. Precis. Eng. 19 437 (in Chinese) [张梁, 倪晓武, 陆建, 刘剑, 戴罡 2011 光学精密工程 19 437]

    [20]

    Kodama R, Norreys P, Mima K, Dangor A, Evans R, Fujita H, Kitagawa Y, Krusheinick K, Miyakoshi T, Miyanaga N 2001 Nature 412 798

    [21]

    Durfee C G, Lynch J, Milchberg H 1995 Phys. Rev. E 51 2368

    [22]

    Phipps C, Turner T, Harrison R, York G, Osborne W, Anderson G, Corlis X, Haynes L, Steele H, Spicochi K 1988 J. Appl. Phys. 64 1083

    [23]

    Ren J 2005 Ph. D. Dissertation (California: stanford university)

    [24]

    Lu J Ni X W 1996Laser interactions with materials physics (1st Ed.) (Beijing: China Machine Press) p69 (in Chinese) [陆建, 倪晓武 1996 激光与材料相互作用物理学(北京:机械工业出版社) 第69页]

    [25]

    Ancona A, Sibillano T, Lugará P M, Gonnella G, Pascazio G, Maffione D 2006 J. Phys. D: Appl. Phys. 39 563

    [26]

    Dykhno I, Ignatchenko G, Bogachenkov E European Patent EP20000943390 [2002-06-12]

    [27]

    Armon E, Zvirin Y, Laufer G, Solan A 1989 J. Appl. Phys. 65 4995

    [28]

    Park K W, Na S J 2010 Appl. Surf. Sci. 256 2392

    [29]

    Modest M F 2006 Journal of Heat Transfer 128 653

    [30]

    Tao S, Wu B, Zhou Y, Gao Y 2009 J. Appl. Phys. 106 123507

    [31]

    Chen J K, Beraun J E 2003 J. Opt. A: Pure Appl. Op. 5 168

    [32]

    Pakhomov A, Thompson M, Gregory D 2003 J. Phys. D: Appl. Phys. 36 2067

    [33]

    Schaffer C B, Brodeur A, Mazur E 2001 Meas. Sci. Technol. 12 1784

    [34]

    Ngoi B, Venkatakrishnan K, Lim E, Tan B, Koh L 2001 Opt. Laser. Eng. 35 361

    [35]

    Zhang N, Zhu X, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602

    [36]

    Perez D, Lewis L 2004 Appl. Phys. A: Mater. 79 987

    [37]

    Lorazo P, Lewis L J, Meunier M 2003 Phys. Rev. Lett. 91 225502

  • [1] Lu Yun-Jie, Tao Tao, Zhao Bin, Zheng Jian. Separation of ion component from solid hydrocarbon materials by laser ablation. Acta Physica Sinica, 2023, 72(7): 075201. doi: 10.7498/aps.72.20230013
    [2] Zhou Mao-Ji, Li Ya-Ju, Qian Dong-Bin, Ye Xiao-Yan, Lin Ping, Ma Xin-Wen. Influence of grain size on dynamic characterizations of laser-driven grain ejection. Acta Physica Sinica, 2022, 71(14): 145203. doi: 10.7498/aps.71.20220243
    [3] Ye Hao, Huang Yin-Bo, Wang Chen, Liu Guo-Rong, Lu Xing-Ji, Cao Zhen-Song, Huang Yao, Qi Gang, Mei Hai-Ping. Measurement of uranium isotope ratio by laser ablation absorption spectroscopy. Acta Physica Sinica, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [4] Luo Le-Le, Dou Zhi-Guo, Ye Ji-Fei. Optimization exploration of laser ablation propulsion performance of infrared dye doped glycidyl azide polymer. Acta Physica Sinica, 2018, 67(18): 187901. doi: 10.7498/aps.67.20180479
    [5] Bai Qing-Shun,  Zhang Kai,  Shen Rong-Qi,  Zhang Fei-Hu,  Miao Xin-Xiang,  Yuan Xiao-Dong. Laser ablation mechanism of contamination on surface of single crystal iron. Acta Physica Sinica, 2018, 67(23): 234401. doi: 10.7498/aps.67.20180999
    [6] Cai Song, Chen Gen-Yu, Zhou Cong, Zhou Feng-Lin, Li Guang. Research and application of plasma recoil pressure physical model for pulsed laser ablation material. Acta Physica Sinica, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [7] Duan Xing-Yue, Li Xiao-Kang, Cheng Mou-Sen, Li Gan. Numerical investigation on shielding properties of the laser ablation plume of polymer doped metal. Acta Physica Sinica, 2016, 65(19): 197901. doi: 10.7498/aps.65.197901
    [8] Kang Xiao-Wei, Chen Long, Chen Jie, Sheng Zheng-Ming. Femtosecond laser ablation of an aluminum target in air. Acta Physica Sinica, 2016, 65(5): 055204. doi: 10.7498/aps.65.055204
    [9] Li Gan, Cheng Mou-Sen, Li Xiao-Kang. Thermal-chemical coupling model of laser induced ablation on polyoxymethylene. Acta Physica Sinica, 2014, 63(10): 107901. doi: 10.7498/aps.63.107901
    [10] Zhu Min, Li Xiao-Hong, Li Guo-Qiang, Chang Li-Yang, Xie Chang-Xin, Qiu Rong, Li Jia-Wen, Huang Wen-Hao. Photoluminescence of monocrystalline silicon irradiated by femtosecond pulsed laser. Acta Physica Sinica, 2014, 63(5): 057801. doi: 10.7498/aps.63.057801
    [11] Liu Shen-Ye, Huang Yi-Xiang, Hu Xin, Zhang Ji-Yan, Yang Guo-Hong, Li Jun, Yi Rong-Qing, Du Hua-Bing, Ding Yong-Kun. Experimental research on X-ray radiation and ablation of an Ag foil targets irradiated by high intensity 2ω0 laser light beam. Acta Physica Sinica, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [12] Chang Hao, Jin Xing, Chen Zhao-Yang. Numerical simulation of nanosecond laser ablation impulse coupling. Acta Physica Sinica, 2013, 62(19): 195203. doi: 10.7498/aps.62.195203
    [13] Si Li-Na, Guo Dan, Luo Jian-Bin. A molecular dynamics study of silica cluster cutting single crystalline silicon asperity. Acta Physica Sinica, 2012, 61(16): 168103. doi: 10.7498/aps.61.168103
    [14] Tian Jia-Tong, Feng Shi-Meng, Wang Kun-Xia, Xu Hua-Tian, Yang Shu-Quan, Liu Feng, Huang Jian-Hua, Pei Jun. The influence of new additive in alkaline solution on the shape of pyramid on the monocrystal Si surface. Acta Physica Sinica, 2012, 61(6): 066803. doi: 10.7498/aps.61.066803
    [15] Chen An-Min, Gao Xun, Jiang Yuan-Fei, Ding Da-Jun, Liu Hang, Jin Ming-Xing. Numerical simulation of femtosecond laser heating of metal films using electron thermal emission. Acta Physica Sinica, 2010, 59(10): 7198-7202. doi: 10.7498/aps.59.7198
    [16] Liu Shi-Bing, Liu Yuan-Xing, He Run, Chen Tao. Instantaneous characteristics of excited atom state 5s' 4D7/2 in the copper plasma induced by laser. Acta Physica Sinica, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [17] Huang Qing-Ju. Radiation mechanism of pulsed laser ablation of metal Al. Acta Physica Sinica, 2008, 57(4): 2314-2319. doi: 10.7498/aps.57.2314
    [18] Zheng Xin-Liang, Li Guang-Shan, Zhong Shou-Xian, Tian Jin-Shou, Li Zhen-Hong, Ren Zhao-Yu. Ablating of carbon nanotube by laser beam and its effect on field emission performance. Acta Physica Sinica, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [19] Cheng Jin-Xiu, Zheng Zhi-Jian, Chen Hong-Su, Miao Wen-Yong, Chen Bo, Wang Yao-Mei, Hu Xin. Implosion compression characteristic of direct-driven ablation target with 1.06μm laser. Acta Physica Sinica, 2004, 53(10): 3419-3423. doi: 10.7498/aps.53.3419
    [20] Zhang Shu-Dong, Li Hai-Yang. Formation and emission spectra of C2 swan band during the reaction of laser ablating target of aluminum with CF4 beam. Acta Physica Sinica, 2003, 52(5): 1297-1301. doi: 10.7498/aps.52.1297
Metrics
  • Abstract views:  7868
  • PDF Downloads:  594
  • Cited By: 0
Publishing process
  • Received Date:  03 January 2012
  • Accepted Date:  17 April 2012

/

返回文章
返回
Baidu
map