Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photoluminescence of monocrystalline silicon irradiated by femtosecond pulsed laser

Zhu Min Li Xiao-Hong Li Guo-Qiang Chang Li-Yang Xie Chang-Xin Qiu Rong Li Jia-Wen Huang Wen-Hao

Citation:

Photoluminescence of monocrystalline silicon irradiated by femtosecond pulsed laser

Zhu Min, Li Xiao-Hong, Li Guo-Qiang, Chang Li-Yang, Xie Chang-Xin, Qiu Rong, Li Jia-Wen, Huang Wen-Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We report the photoluminescence of monocrystalline silicon irradiated by femtosecond pulsed laser in different environments (deionized water and air) and energy density conditions. The field emission scanning electron microscope (FESEM) measurement results show the formation of completely different morphologies on silicon surface in different environments. A stripe-like microstructure on the silicon surface in air is formed in contrast to the smaller and coral-like microstructure generated in the deionized water. By using the energy dispersive spectroscopy (EDS) we find that silicon and oxygen is the main elemental composition on femtosecond laser-induced silicon surface, and the content of oxygen on the sample surface formed in the deionized water is nearly four times larger than that in air. The Si-Si bond (610 cm-1) and Si-O-Si bond vibrations (1105 cm-1) are detected mainly in the Fourier transform infrared transmission spectrum (FT-IR). The photoluminescence (PL) spectroscopy measurement results show that visible blue luminescence is observed both from the silicon ablated in the deionized water and in air, while the shape and position of the emitted luminescence peak are substantially the same. However, the luminescence intensity of silicon etched in the deionized water is close to 3 times stronger than that in air when the photoluminescence is excited at respective most suitable excitation wavelength. A more interesting phenomenon is that the position and shape of the photoluminescence peak in the visible range are basically not changed. The studies confirm that oxygen plays an important role in photoluminescence enhancement. Photoluminescence may be mainly generated by the formation of oxygen defects SiOx and the content of low oxide SiOx (x<2) determines the luminous intensity level.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11204250), the Sichuan Provincial Education Department Key Project, China (Grant No. 12ZA186), and the material properties under extreme conditions Joint Laboratory Open Fund (Grant No. 12zxjk02).
    [1]

    Li C B, Jia T Q, Sun H Y, Li X X, Xu S Z, Feng D H, Wang X F, Ge X C, Xu Z Z 2006 Acta Phys. Sin. 55 217 (in Chinese) [李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展 2006 55 217]

    [2]

    Yang Y, Wang C, Yang R D, Li L, Xiong F, Bao J M 2009 Chin. Phys. B 18 4906

    [3]

    Yi Cui, Charles M. Lieber 2001 Science 291 851

    [4]

    Erogbogbo F, Yong K T, Roy I, Xu G, Prasad P N, Swihart M T 2008 ACS Nano 2 873

    [5]

    Kim U, Kim I, Park Y, Lee K Y, Yim S Y, Park J G, Ahn H G, Park S H, Choi H J 2011 ACS Nano 5 2176

    [6]

    ShinjiTakeoka, Kimiaki Toshikiyo, Minoru Fujii, Shinji Hayashi, Keiichi Yamamoto 2000 Phys. Rev. B 61 15988

    [7]

    Tyshcenko I E, Rbeohle L, Yankov R A, Skourpa W 1998 Appl. Phys. Lett. 73 1418

    [8]

    Chen X Y, Lu Y F, Wu Y H, Cho B J, Liu M H, Dai D Y, Song W D 2003 Appl. Phys. Lett. 93 6311

    [9]

    Deng Y P, Jia T Q, Leng Y X, Lu H H, Li R X, Xu Z Z 2004 Acta Phys. Sin. 53 2216 (in Chinese) [邓蕴沛, 贾天卿, 冷雨欣, 陆海鹤, 李儒新, 徐至展 2004 53 2216]

    [10]

    Yu B H, Dai N L, Wang Y, Li Y H, Ji L L, Zheng Q G, Lu P X 2007 Acta Phys. Sin. 56 5821 (in Chinese) [余本海, 戴能利, 王英, 李玉华, 季玲玲, 郑启光, 陆培祥2007 56 5821]

    [11]

    Huang W Q, Xu L, Wang H X, Jin F, Wu K Y, Liu S R, Qin C J, Qin S J 2008 Chin. Phys. 17 1817

    [12]

    Karabutov A V, Shafeev G A, Simakin A V 2003 Diamond and Related Materials 12 1705

    [13]

    Her T H, Finlay R J, Wu C, Mazur E 1998 Appl. Phys. Lett. 73 1673

    [14]

    Siekierzycka J R, Vasic M R, Zuihof H, Brouwer A 2011 J. Phys. Chem. C 115 20888

    [15]

    Fan J Y, Chu P K 2010 Small 6 2080

    [16]

    Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T, 1990 Appl. Phys. Lett. 56 2379

    [17]

    Weng Y M, Zong X F 1996 Chinese Phys. Lett. 13 35

    [18]

    Wu C, Crouch C H, Zhao L, Mazur E 2002 Appl. Phys. Lett. 11 1999

    [19]

    Yang S K, Li W Z, Cao B Q, Zeng H B, Cai W P 2011 Phys. Chem. C 115 21056

    [20]

    Qin G G, Li Y J 2003 Phys. Rev. B 68 085309

    [21]

    Weng Y M, Fan Z N, Zong X F 1993 Chinese Phys. Lett. 10 18

    [22]

    Liu P, Liang Y, Li H B, Xiao J, He T 2013 AIP Advances 3 022127

    [23]

    Li G Q, Li J W, Liang Y G, Li X H, Hua Y L, Chua J R, Huang W H 2013 Applied Surface Science 276 203

    [24]

    Shaheen M E, Gagnon J E, Fryer B J 2013 J. Appl. Phys. 113 213106

    [25]

    Shimizu Iwayama T, Nakao S, Saitoh K 1994 Appl. Phys. Lett. 65 1814

    [26]

    Ghislotti G, Nielsen B, Asoda Kumar P, Lyn K G, Gambhir A, Di Auro L F, Bottani C E 1996 J. Appl. Phys. 79 8660

    [27]

    Kenyon A J, Trwoga P F, Pitt C W, Rehm G 1996 J. Appl. Phys. 79 9291

    [28]

    Iyengar V V, Nayak B K, Karren L, Meyer H M, Biegalski M D, Li J V, Gupta M C 2011 Solar Energy Materials & Solar Cells 95 2745

    [29]

    Wen C, Yang H D, Li X H, Cui Y X, He X Q, Duan X F, Li Z H 2012 Appl. Phys. A 109 635

    [30]

    Daminelli G, Krger J, Kautek W 2004 Thin Solid Films 467 334

  • [1]

    Li C B, Jia T Q, Sun H Y, Li X X, Xu S Z, Feng D H, Wang X F, Ge X C, Xu Z Z 2006 Acta Phys. Sin. 55 217 (in Chinese) [李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展 2006 55 217]

    [2]

    Yang Y, Wang C, Yang R D, Li L, Xiong F, Bao J M 2009 Chin. Phys. B 18 4906

    [3]

    Yi Cui, Charles M. Lieber 2001 Science 291 851

    [4]

    Erogbogbo F, Yong K T, Roy I, Xu G, Prasad P N, Swihart M T 2008 ACS Nano 2 873

    [5]

    Kim U, Kim I, Park Y, Lee K Y, Yim S Y, Park J G, Ahn H G, Park S H, Choi H J 2011 ACS Nano 5 2176

    [6]

    ShinjiTakeoka, Kimiaki Toshikiyo, Minoru Fujii, Shinji Hayashi, Keiichi Yamamoto 2000 Phys. Rev. B 61 15988

    [7]

    Tyshcenko I E, Rbeohle L, Yankov R A, Skourpa W 1998 Appl. Phys. Lett. 73 1418

    [8]

    Chen X Y, Lu Y F, Wu Y H, Cho B J, Liu M H, Dai D Y, Song W D 2003 Appl. Phys. Lett. 93 6311

    [9]

    Deng Y P, Jia T Q, Leng Y X, Lu H H, Li R X, Xu Z Z 2004 Acta Phys. Sin. 53 2216 (in Chinese) [邓蕴沛, 贾天卿, 冷雨欣, 陆海鹤, 李儒新, 徐至展 2004 53 2216]

    [10]

    Yu B H, Dai N L, Wang Y, Li Y H, Ji L L, Zheng Q G, Lu P X 2007 Acta Phys. Sin. 56 5821 (in Chinese) [余本海, 戴能利, 王英, 李玉华, 季玲玲, 郑启光, 陆培祥2007 56 5821]

    [11]

    Huang W Q, Xu L, Wang H X, Jin F, Wu K Y, Liu S R, Qin C J, Qin S J 2008 Chin. Phys. 17 1817

    [12]

    Karabutov A V, Shafeev G A, Simakin A V 2003 Diamond and Related Materials 12 1705

    [13]

    Her T H, Finlay R J, Wu C, Mazur E 1998 Appl. Phys. Lett. 73 1673

    [14]

    Siekierzycka J R, Vasic M R, Zuihof H, Brouwer A 2011 J. Phys. Chem. C 115 20888

    [15]

    Fan J Y, Chu P K 2010 Small 6 2080

    [16]

    Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T, 1990 Appl. Phys. Lett. 56 2379

    [17]

    Weng Y M, Zong X F 1996 Chinese Phys. Lett. 13 35

    [18]

    Wu C, Crouch C H, Zhao L, Mazur E 2002 Appl. Phys. Lett. 11 1999

    [19]

    Yang S K, Li W Z, Cao B Q, Zeng H B, Cai W P 2011 Phys. Chem. C 115 21056

    [20]

    Qin G G, Li Y J 2003 Phys. Rev. B 68 085309

    [21]

    Weng Y M, Fan Z N, Zong X F 1993 Chinese Phys. Lett. 10 18

    [22]

    Liu P, Liang Y, Li H B, Xiao J, He T 2013 AIP Advances 3 022127

    [23]

    Li G Q, Li J W, Liang Y G, Li X H, Hua Y L, Chua J R, Huang W H 2013 Applied Surface Science 276 203

    [24]

    Shaheen M E, Gagnon J E, Fryer B J 2013 J. Appl. Phys. 113 213106

    [25]

    Shimizu Iwayama T, Nakao S, Saitoh K 1994 Appl. Phys. Lett. 65 1814

    [26]

    Ghislotti G, Nielsen B, Asoda Kumar P, Lyn K G, Gambhir A, Di Auro L F, Bottani C E 1996 J. Appl. Phys. 79 8660

    [27]

    Kenyon A J, Trwoga P F, Pitt C W, Rehm G 1996 J. Appl. Phys. 79 9291

    [28]

    Iyengar V V, Nayak B K, Karren L, Meyer H M, Biegalski M D, Li J V, Gupta M C 2011 Solar Energy Materials & Solar Cells 95 2745

    [29]

    Wen C, Yang H D, Li X H, Cui Y X, He X Q, Duan X F, Li Z H 2012 Appl. Phys. A 109 635

    [30]

    Daminelli G, Krger J, Kautek W 2004 Thin Solid Films 467 334

  • [1] Li Xiang-Cao, Liu Bao-An, Li Meng, Yan Chun-Yan, Ren Jie, Liu Chang, Ju Xin. Photoluminescence spectrum study of defects of potassium dihydrogen phosphate crystals irradiated by different laser fluences. Acta Physica Sinica, 2020, 69(17): 174208. doi: 10.7498/aps.69.20200482
    [2] Xu Ling-Mao, Gao Chao, Dong Peng, Zhao Jian-Jiang, Ma Xiang-Yang, Yang De-Ren. Dislocation motion during rapid thermal processing of single-crystalline silicon wafers. Acta Physica Sinica, 2013, 62(16): 168101. doi: 10.7498/aps.62.168101
    [3] Si Li-Na, Guo Dan, Luo Jian-Bin. A molecular dynamics study of silica cluster cutting single crystalline silicon asperity. Acta Physica Sinica, 2012, 61(16): 168103. doi: 10.7498/aps.61.168103
    [4] Tian Jia-Tong, Feng Shi-Meng, Wang Kun-Xia, Xu Hua-Tian, Yang Shu-Quan, Liu Feng, Huang Jian-Hua, Pei Jun. The influence of new additive in alkaline solution on the shape of pyramid on the monocrystal Si surface. Acta Physica Sinica, 2012, 61(6): 066803. doi: 10.7498/aps.61.066803
    [5] Bao Ling-Dong, Han Jing-Hua, Duan Tao, Sun Nian-Chun, Gao Xiang, Feng Guo-Ying, Yang Li-Ming, Niu Rui-Hua, Liu Quan-Xi. Investigation of thermodynamic progress of silicon ablated by nanosecond uv repetitive pulse laser. Acta Physica Sinica, 2012, 61(19): 197901. doi: 10.7498/aps.61.197901
    [6] Fang He, Wang Shun-Li, Li Li-Qun, Li Pei-Gang, Liu Ai-Ping, Tang Wei-Hua. Synthesis and photoluminescence of ZnO and Zn/ZnOnanoparticles prepared by liquid-phase pulsed laser ablation. Acta Physica Sinica, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [7] Ma Wei-Gang, Wang Hai-Dong, Zhang Xing, Wang Wei. Theoretical and experimental study of femtosecond pulse laser heating on thin metal film. Acta Physica Sinica, 2011, 60(6): 064401. doi: 10.7498/aps.60.064401
    [8] Yang Yi-Fa, Li Yu-Hua, Long Hua, Lu Pei-Xiang, Yang Guang, Zheng Qi-Guang. Effect of oxygen pressure on the optical properties of ZnO/Si(100) thin films deposited by femtosecond pulse laser. Acta Physica Sinica, 2009, 58(4): 2785-2791. doi: 10.7498/aps.58.2785
    [9] Zheng Li-Ren, Huang Bai-Biao, Wei Ji-Yong. Preparation of SiOx nanowires in different atmosphere, their morphology, PL and FTIR properties. Acta Physica Sinica, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [10] Yu Wei, Li Ya-Chao, Ding Wen-Ge, Zhang Jiang-Yong, Yang Yan-Bin, Fu Guang-Sheng. Bonding configurations and photoluminescence of amorphous Si nanoparticles in SiNx films. Acta Physica Sinica, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [11] Miao Jing-Wei, Wang Pei-Lu, Zhu Zhou-Sen, Yuan Xue-Dong, Wang Hu, Yang Chao-Wen, Shi Mian-Gong, Miao Lei, Sun Wei-Li, Zhang Jing, Liao Xue-Hua. Photoluminescence spectrum of monocrystalline Si implanted by nitrogen cluster ions. Acta Physica Sinica, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [12] Yao Zhi-Tao, Sun Xin-Rui, Xu Hai-Jun, Jiang Wei-Fen, Xiao Shun-Hua, Li Xin-Jian. The structure and photoluminescence properties of ZnO/silicon nanoporous pillar array. Acta Physica Sinica, 2007, 56(10): 6098-6103. doi: 10.7498/aps.56.6098
    [13] Jian Ya-Qing, Yan Pei-Guang, Lü Ke-Cheng, Zhang Tie-Qun, Zhu Xiao-Nong. Experimental study and numerical analysis of femtosecond pulse propagation and supercontinuum generation in highly nonlinear photonic crystal fiber. Acta Physica Sinica, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [14] Wang Ying-Long, Lu Li-Fang, Yan Chang-Yu, Chu Li-Zhi, Zhou Yang, Fu Guang-Sheng, Peng Ying-Cai. The laser ablated deposition of Si nanocrystalline film with narrow photoluminescence peak. Acta Physica Sinica, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [15] Ji Ai-Ling, Ma Li-Bo, Liu Cheng, Wang Yong-Qian. Low temperature fabrication of nanostructured Si-SiOx and Si-SiNx composite films and their photoluminescence features. Acta Physica Sinica, 2004, 53(11): 3818-3822. doi: 10.7498/aps.53.3818
    [16] Xu Da-Yin, Liu Yan-Ping, He Zhi-Wei, Fang Ze-Bo, Liu Xue-Qin, Wang Yin-Yue. The behavior of photoluminescence from SiC:Tb films deposited on porous silicon substrate. Acta Physica Sinica, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [17] Huang Kai, Wang Si-Hui, Shi Yi, Qin Guo-Yi, Zhang Rong, Zheng You-Dou. Effect of inner electric field on the photoluminescence spectrum of nanosilicon. Acta Physica Sinica, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [18] Peng Ai-Hua, Xie Er-Qing, Jiang Ning, Zhang Zhi-Min, Li Peng, He De-Yan. The photoluminescence characterization of rare earths (Tb, Gd) embedded into por ous silicon. Acta Physica Sinica, 2003, 52(7): 1792-1796. doi: 10.7498/aps.52.1792
    [19] MA SHU-YI, QIN GUO-GANG, YOU LI-PING, WANG YIN-YUE. COMPARATIVE STUDY ON PHOTOLUMINESCENCE FROM Si-CONTAINING SILICON OXIDE FILMS AND Ge-CONTAINING SILICON OXIDE FILMS. Acta Physica Sinica, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
    [20] LIANG ER-JUN, CHAO MING-JU. LASER-INDUCED LATTICE DEFORMATION OF POROUS SILICON REVEALED BY RAMAN AND PHOTOLUMINESCENCE SPECTROSCOPIES. Acta Physica Sinica, 2001, 50(11): 2241-2246. doi: 10.7498/aps.50.2241
Metrics
  • Abstract views:  6586
  • PDF Downloads:  487
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2013
  • Accepted Date:  12 November 2013
  • Published Online:  05 March 2014

/

返回文章
返回
Baidu
map