-
利用飞秒脉冲激光对单晶硅进行辐照,研究了在不同环境(纯水和空气)和能量密度条件下激光刻蚀过后硅片的光致荧光特性. 对于辐照后的硅片,利用了场发射扫描电子显微镜(FESEM)、能谱仪(EDS)、傅里叶红外光谱仪(FT-IR)、 光致荧光光谱仪(PL)进行表征. 结果显示:在空气中样品表面形成了条纹状微结构,纯水中硅片表面生成了尺寸更小的珊瑚状微结构;激光刻蚀后在硅片表面的生成物主要是SiOx(x-1)和Si–O–Si键(1105 cm-1)的振动;在空气和纯水中激发出的荧光均为蓝光(420–470 nm),在各自最佳激发波长下,纯水中荧光强度比空气中强2到3倍,但是在可见光范围内荧光峰的位置和形状都基本没有发生变化. 研究表明:氧元素在光致发光增强上起着重要作用,光致发光最主要是由形成的氧缺陷SiOx(xx的多少决定了发光的强弱.We report the photoluminescence of monocrystalline silicon irradiated by femtosecond pulsed laser in different environments (deionized water and air) and energy density conditions. The field emission scanning electron microscope (FESEM) measurement results show the formation of completely different morphologies on silicon surface in different environments. A stripe-like microstructure on the silicon surface in air is formed in contrast to the smaller and coral-like microstructure generated in the deionized water. By using the energy dispersive spectroscopy (EDS) we find that silicon and oxygen is the main elemental composition on femtosecond laser-induced silicon surface, and the content of oxygen on the sample surface formed in the deionized water is nearly four times larger than that in air. The Si-Si bond (610 cm-1) and Si-O-Si bond vibrations (1105 cm-1) are detected mainly in the Fourier transform infrared transmission spectrum (FT-IR). The photoluminescence (PL) spectroscopy measurement results show that visible blue luminescence is observed both from the silicon ablated in the deionized water and in air, while the shape and position of the emitted luminescence peak are substantially the same. However, the luminescence intensity of silicon etched in the deionized water is close to 3 times stronger than that in air when the photoluminescence is excited at respective most suitable excitation wavelength. A more interesting phenomenon is that the position and shape of the photoluminescence peak in the visible range are basically not changed. The studies confirm that oxygen plays an important role in photoluminescence enhancement. Photoluminescence may be mainly generated by the formation of oxygen defects SiOx and the content of low oxide SiOx (x<2) determines the luminous intensity level.
-
Keywords:
- femtosecond pulsed laser /
- monocrystalline silicon /
- Photoluminescence /
- oxygen defects SiOx
[1] Li C B, Jia T Q, Sun H Y, Li X X, Xu S Z, Feng D H, Wang X F, Ge X C, Xu Z Z 2006 Acta Phys. Sin. 55 217 (in Chinese) [李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展 2006 55 217]
[2] Yang Y, Wang C, Yang R D, Li L, Xiong F, Bao J M 2009 Chin. Phys. B 18 4906
[3] Yi Cui, Charles M. Lieber 2001 Science 291 851
[4] Erogbogbo F, Yong K T, Roy I, Xu G, Prasad P N, Swihart M T 2008 ACS Nano 2 873
[5] Kim U, Kim I, Park Y, Lee K Y, Yim S Y, Park J G, Ahn H G, Park S H, Choi H J 2011 ACS Nano 5 2176
[6] ShinjiTakeoka, Kimiaki Toshikiyo, Minoru Fujii, Shinji Hayashi, Keiichi Yamamoto 2000 Phys. Rev. B 61 15988
[7] Tyshcenko I E, Rbeohle L, Yankov R A, Skourpa W 1998 Appl. Phys. Lett. 73 1418
[8] Chen X Y, Lu Y F, Wu Y H, Cho B J, Liu M H, Dai D Y, Song W D 2003 Appl. Phys. Lett. 93 6311
[9] Deng Y P, Jia T Q, Leng Y X, Lu H H, Li R X, Xu Z Z 2004 Acta Phys. Sin. 53 2216 (in Chinese) [邓蕴沛, 贾天卿, 冷雨欣, 陆海鹤, 李儒新, 徐至展 2004 53 2216]
[10] Yu B H, Dai N L, Wang Y, Li Y H, Ji L L, Zheng Q G, Lu P X 2007 Acta Phys. Sin. 56 5821 (in Chinese) [余本海, 戴能利, 王英, 李玉华, 季玲玲, 郑启光, 陆培祥2007 56 5821]
[11] Huang W Q, Xu L, Wang H X, Jin F, Wu K Y, Liu S R, Qin C J, Qin S J 2008 Chin. Phys. 17 1817
[12] Karabutov A V, Shafeev G A, Simakin A V 2003 Diamond and Related Materials 12 1705
[13] Her T H, Finlay R J, Wu C, Mazur E 1998 Appl. Phys. Lett. 73 1673
[14] Siekierzycka J R, Vasic M R, Zuihof H, Brouwer A 2011 J. Phys. Chem. C 115 20888
[15] Fan J Y, Chu P K 2010 Small 6 2080
[16] Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T, 1990 Appl. Phys. Lett. 56 2379
[17] Weng Y M, Zong X F 1996 Chinese Phys. Lett. 13 35
[18] Wu C, Crouch C H, Zhao L, Mazur E 2002 Appl. Phys. Lett. 11 1999
[19] Yang S K, Li W Z, Cao B Q, Zeng H B, Cai W P 2011 Phys. Chem. C 115 21056
[20] Qin G G, Li Y J 2003 Phys. Rev. B 68 085309
[21] Weng Y M, Fan Z N, Zong X F 1993 Chinese Phys. Lett. 10 18
[22] Liu P, Liang Y, Li H B, Xiao J, He T 2013 AIP Advances 3 022127
[23] Li G Q, Li J W, Liang Y G, Li X H, Hua Y L, Chua J R, Huang W H 2013 Applied Surface Science 276 203
[24] Shaheen M E, Gagnon J E, Fryer B J 2013 J. Appl. Phys. 113 213106
[25] Shimizu Iwayama T, Nakao S, Saitoh K 1994 Appl. Phys. Lett. 65 1814
[26] Ghislotti G, Nielsen B, Asoda Kumar P, Lyn K G, Gambhir A, Di Auro L F, Bottani C E 1996 J. Appl. Phys. 79 8660
[27] Kenyon A J, Trwoga P F, Pitt C W, Rehm G 1996 J. Appl. Phys. 79 9291
[28] Iyengar V V, Nayak B K, Karren L, Meyer H M, Biegalski M D, Li J V, Gupta M C 2011 Solar Energy Materials & Solar Cells 95 2745
[29] Wen C, Yang H D, Li X H, Cui Y X, He X Q, Duan X F, Li Z H 2012 Appl. Phys. A 109 635
[30] Daminelli G, Krger J, Kautek W 2004 Thin Solid Films 467 334
-
[1] Li C B, Jia T Q, Sun H Y, Li X X, Xu S Z, Feng D H, Wang X F, Ge X C, Xu Z Z 2006 Acta Phys. Sin. 55 217 (in Chinese) [李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展 2006 55 217]
[2] Yang Y, Wang C, Yang R D, Li L, Xiong F, Bao J M 2009 Chin. Phys. B 18 4906
[3] Yi Cui, Charles M. Lieber 2001 Science 291 851
[4] Erogbogbo F, Yong K T, Roy I, Xu G, Prasad P N, Swihart M T 2008 ACS Nano 2 873
[5] Kim U, Kim I, Park Y, Lee K Y, Yim S Y, Park J G, Ahn H G, Park S H, Choi H J 2011 ACS Nano 5 2176
[6] ShinjiTakeoka, Kimiaki Toshikiyo, Minoru Fujii, Shinji Hayashi, Keiichi Yamamoto 2000 Phys. Rev. B 61 15988
[7] Tyshcenko I E, Rbeohle L, Yankov R A, Skourpa W 1998 Appl. Phys. Lett. 73 1418
[8] Chen X Y, Lu Y F, Wu Y H, Cho B J, Liu M H, Dai D Y, Song W D 2003 Appl. Phys. Lett. 93 6311
[9] Deng Y P, Jia T Q, Leng Y X, Lu H H, Li R X, Xu Z Z 2004 Acta Phys. Sin. 53 2216 (in Chinese) [邓蕴沛, 贾天卿, 冷雨欣, 陆海鹤, 李儒新, 徐至展 2004 53 2216]
[10] Yu B H, Dai N L, Wang Y, Li Y H, Ji L L, Zheng Q G, Lu P X 2007 Acta Phys. Sin. 56 5821 (in Chinese) [余本海, 戴能利, 王英, 李玉华, 季玲玲, 郑启光, 陆培祥2007 56 5821]
[11] Huang W Q, Xu L, Wang H X, Jin F, Wu K Y, Liu S R, Qin C J, Qin S J 2008 Chin. Phys. 17 1817
[12] Karabutov A V, Shafeev G A, Simakin A V 2003 Diamond and Related Materials 12 1705
[13] Her T H, Finlay R J, Wu C, Mazur E 1998 Appl. Phys. Lett. 73 1673
[14] Siekierzycka J R, Vasic M R, Zuihof H, Brouwer A 2011 J. Phys. Chem. C 115 20888
[15] Fan J Y, Chu P K 2010 Small 6 2080
[16] Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T, 1990 Appl. Phys. Lett. 56 2379
[17] Weng Y M, Zong X F 1996 Chinese Phys. Lett. 13 35
[18] Wu C, Crouch C H, Zhao L, Mazur E 2002 Appl. Phys. Lett. 11 1999
[19] Yang S K, Li W Z, Cao B Q, Zeng H B, Cai W P 2011 Phys. Chem. C 115 21056
[20] Qin G G, Li Y J 2003 Phys. Rev. B 68 085309
[21] Weng Y M, Fan Z N, Zong X F 1993 Chinese Phys. Lett. 10 18
[22] Liu P, Liang Y, Li H B, Xiao J, He T 2013 AIP Advances 3 022127
[23] Li G Q, Li J W, Liang Y G, Li X H, Hua Y L, Chua J R, Huang W H 2013 Applied Surface Science 276 203
[24] Shaheen M E, Gagnon J E, Fryer B J 2013 J. Appl. Phys. 113 213106
[25] Shimizu Iwayama T, Nakao S, Saitoh K 1994 Appl. Phys. Lett. 65 1814
[26] Ghislotti G, Nielsen B, Asoda Kumar P, Lyn K G, Gambhir A, Di Auro L F, Bottani C E 1996 J. Appl. Phys. 79 8660
[27] Kenyon A J, Trwoga P F, Pitt C W, Rehm G 1996 J. Appl. Phys. 79 9291
[28] Iyengar V V, Nayak B K, Karren L, Meyer H M, Biegalski M D, Li J V, Gupta M C 2011 Solar Energy Materials & Solar Cells 95 2745
[29] Wen C, Yang H D, Li X H, Cui Y X, He X Q, Duan X F, Li Z H 2012 Appl. Phys. A 109 635
[30] Daminelli G, Krger J, Kautek W 2004 Thin Solid Films 467 334
计量
- 文章访问数: 6561
- PDF下载量: 487
- 被引次数: 0