搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光烧蚀掺杂金属聚合物羽流屏蔽特性数值研究

段兴跃 李小康 程谋森 李干

引用本文:
Citation:

激光烧蚀掺杂金属聚合物羽流屏蔽特性数值研究

段兴跃, 李小康, 程谋森, 李干

Numerical investigation on shielding properties of the laser ablation plume of polymer doped metal

Duan Xing-Yue, Li Xiao-Kang, Cheng Mou-Sen, Li Gan
PDF
导出引用
  • 激光烧蚀推进中,烧蚀羽流对入射激光的屏蔽效应是影响推进性能的重要因素;当采用掺杂金属聚合物作为工质时,易电离金属掺杂物的引入,使屏蔽效应更加明显.本文建立了激光烧蚀掺杂金属聚合物羽流飞散及电离、屏蔽模型,计算了340 J/cm2激光烧蚀掺杂微米铝颗粒聚甲醛工质的比冲,与实验数据对比表明模型能够有效模拟掺杂聚合物羽流的屏蔽特性.获得了不同激光能量密度下的电子数密度、吸收系数分布及屏蔽系数时间变化曲线.结果表明:低激光能量密度(5 J/cm2)时,羽流屏蔽效应以未完全分解聚合物短链对入射激光能量的吸收为主;高激光能量密度(20 J/cm2)下,羽流电子数密度逐步增大至1020 m-3,形成明显的等离子体吸收,屏蔽系数的时间变化特征复杂.本文对掺杂金属聚合物烧蚀羽流的屏蔽特性进行了定量研究,可为激光烧蚀推进性能优化提供参考.
    For laser ablation propulsion, the shielding effect of ablation plume on the incident laser is an essential factor affecting the propulsion performance. When the polymer doped metal is utilized as the propellant, the shielding effect would be more significant because the metal dopant is easily ionized. In order to study the shielding effect of ablation plume on the incident laser energy, a laser ablation model with taking into account the plume expansion, ionization and the shielding effect is built in the present work. For the polyoxymethylene doped aluminum particles irradiated by a laser with a fluence of 3-40 J/cm2, the specific impulse of laser ablation is calculated, and the consistency of the numerical results with the experimental data demonstrates the availability of the model. Furthermore, the effects of both the incompletely decomposed polymer chains and the plasma induced by laser ablation on the incident laser are considered. The time variations of electron number density distribution under different laser fluences are calculated based on the laser induced ionization model. Subsequently, the absorption coefficient distributions and the time variations of shielding coefficient under different laser fluences are obtained. The results show that at a low laser fluence (5 J/cm2), the electron number density is small, so the plume shielding effect is dominated by the laser energy absorption of the small polymer chains which are not completely decomposed. While at a high laser fluence (20 J/cm2), small polymer chains are almost completely decomposed into atoms even plasma, hence the shielding effect is dominated by the plasma since the electron number density in the plume increases up to 1020 m-3, and the complicated characteristic in the time variation of shielding coefficient appears. The quantitative analysis results obtained in the present work can be helpful for optimizing the performances of laser ablation propulsion.
      通信作者: 李小康, lxk0330@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号:51306203)和国防科学技术大学科研计划项目(批准号:JC-14-01-02)资助的课题.
      Corresponding author: Li Xiao-Kang, lxk0330@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51306203), and the Research Program of National University of Defense Technology (Grant No. JC-14-01-02).
    [1]

    Kantrowitz A 1972 Aeronaut. Astronaut. 10 74

    [2]

    Phipps C, Birkan M, Bohn W Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J 2010 J. Propul. Power 26 609

    [3]

    Mead Jr F B, Myrabo L N, Messitt D G 1998 High Power Laser Ablation International Society for Optics and Photonics Santa Fe, New Mexico, April 27-30, 1998 p560

    [4]

    Schall W O, Tegel J, Eckel H A 2006 Third International Symposium on Beamed Energy Propulsion Troy, New York, October 11-14, 2006, p423

    [5]

    Cheng J Z, Cai J, Hu Y, Zhang Z M, Ding Z J 2008 High Pow. Laser Part. Beams 20 1190(in Chinese)[程建中, 蔡建, 胡云, 张增明, 丁泽军2008强激光与粒子束20 1190]

    [6]

    Peng J, Zheng H, Hu X J, Tang Z P 2009 High Pow. Laser Part. Beams 21 821(in Chinese)[彭杰, 郑航, 胡晓军, 唐志平2009强激光与粒子束21 821]

    [7]

    Sinko J E, Pakhomov A V 2008 Fifth International Symposium on Beamed Energy Propulsion Kailua-Kona, Hawaii, November 12-15, 2008, p254

    [8]

    Tong H F, Tang Z P, Zhang L 2007 J. Comput. Phys. 24 667(in Chinese)[童慧峰, 唐志平, 张凌2007计算物理24 667]

    [9]

    Tong H F, Tang Z P, Zhang L 2006 High Pow. Laser Part. Beams 18 1996(in Chinese)[童慧峰, 唐志平, 张凌2006强激光与粒子束18 1996]

    [10]

    Tong H F, Tang Z P 2008 Chin. J. High Pressure Phys. 22 142 (in Chinese) [童慧峰, 唐志平2008高压 22 142]

    [11]

    Kundrapu M, Keidar M 2009 40th AIAA Plasmadynamics and Lasers Conference, San Antonio, Texas June 22-25, 2009, p3589

    [12]

    Keidar M, Boyd I D, Luke J, Phipps C 2004 J. Appl. Phys. 96 49

    [13]

    Li G, Cheng M S, Li M S 2014 Acta Phys. Sin. 63 107901(in Chinese) [李干, 程谋森, 李小康2014 63 107901]

    [14]

    Sakai T, Sasoh A, Anju K, Sawada K, Mori K 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7-10, 2008 p1080

    [15]

    Li G 2014 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [李干2014博士学位论文(长沙: 国防科学技术大学)]

    [16]

    Lippert T 2004 Adv. Polym. Sci. 168 51

    [17]

    Chang H, Ye J F, Zhou W J 2015 J. Propul. Technol. 36 1588(in Chinese) [常浩, 叶继飞, 周伟静2015推进技术36 1588]

    [18]

    Andre P 1996 J. Phys. D: Appl. Phys. 29 1963

    [19]

    Morgan C G 1975 Rep. Prog. Phys. 38 621

    [20]

    Young M, Hercher M 1967 J. Appl. Phys. 38 4393

    [21]

    Simth D C 1977 J. Appl. Phys. 48 2217

    [22]

    Bäuerle D 2011 Laser Processing and Chemistry Fourth Edition (Berlin: Springer-Verlag) pp223-226

    [23]

    Li G, Cheng M S, Li X K 2014 J. Natl. Univ. Def. Technol. 36 1(in Chinese)[李干, 程谋森, 李小康2014国防科技大学学报36 1]

    [24]

    Donald E K (translated by Su Y L) 2003 The Art of Computer Programming (Vol. 2): Seminumerical Algorithms (3rd Ed.) (Beijing: National Defense Industry Press) p125(in Chinese) [唐纳德E K著(苏运霖译) 2003计算机程序设计艺术第二卷: 半数值算法(第三版)(北京: 国防工业出版社)第125页

    [25]

    Peng J 2009 M. S. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [彭杰2009硕士学位论文(合肥: 中国科学技术大学)]

  • [1]

    Kantrowitz A 1972 Aeronaut. Astronaut. 10 74

    [2]

    Phipps C, Birkan M, Bohn W Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J 2010 J. Propul. Power 26 609

    [3]

    Mead Jr F B, Myrabo L N, Messitt D G 1998 High Power Laser Ablation International Society for Optics and Photonics Santa Fe, New Mexico, April 27-30, 1998 p560

    [4]

    Schall W O, Tegel J, Eckel H A 2006 Third International Symposium on Beamed Energy Propulsion Troy, New York, October 11-14, 2006, p423

    [5]

    Cheng J Z, Cai J, Hu Y, Zhang Z M, Ding Z J 2008 High Pow. Laser Part. Beams 20 1190(in Chinese)[程建中, 蔡建, 胡云, 张增明, 丁泽军2008强激光与粒子束20 1190]

    [6]

    Peng J, Zheng H, Hu X J, Tang Z P 2009 High Pow. Laser Part. Beams 21 821(in Chinese)[彭杰, 郑航, 胡晓军, 唐志平2009强激光与粒子束21 821]

    [7]

    Sinko J E, Pakhomov A V 2008 Fifth International Symposium on Beamed Energy Propulsion Kailua-Kona, Hawaii, November 12-15, 2008, p254

    [8]

    Tong H F, Tang Z P, Zhang L 2007 J. Comput. Phys. 24 667(in Chinese)[童慧峰, 唐志平, 张凌2007计算物理24 667]

    [9]

    Tong H F, Tang Z P, Zhang L 2006 High Pow. Laser Part. Beams 18 1996(in Chinese)[童慧峰, 唐志平, 张凌2006强激光与粒子束18 1996]

    [10]

    Tong H F, Tang Z P 2008 Chin. J. High Pressure Phys. 22 142 (in Chinese) [童慧峰, 唐志平2008高压 22 142]

    [11]

    Kundrapu M, Keidar M 2009 40th AIAA Plasmadynamics and Lasers Conference, San Antonio, Texas June 22-25, 2009, p3589

    [12]

    Keidar M, Boyd I D, Luke J, Phipps C 2004 J. Appl. Phys. 96 49

    [13]

    Li G, Cheng M S, Li M S 2014 Acta Phys. Sin. 63 107901(in Chinese) [李干, 程谋森, 李小康2014 63 107901]

    [14]

    Sakai T, Sasoh A, Anju K, Sawada K, Mori K 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7-10, 2008 p1080

    [15]

    Li G 2014 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [李干2014博士学位论文(长沙: 国防科学技术大学)]

    [16]

    Lippert T 2004 Adv. Polym. Sci. 168 51

    [17]

    Chang H, Ye J F, Zhou W J 2015 J. Propul. Technol. 36 1588(in Chinese) [常浩, 叶继飞, 周伟静2015推进技术36 1588]

    [18]

    Andre P 1996 J. Phys. D: Appl. Phys. 29 1963

    [19]

    Morgan C G 1975 Rep. Prog. Phys. 38 621

    [20]

    Young M, Hercher M 1967 J. Appl. Phys. 38 4393

    [21]

    Simth D C 1977 J. Appl. Phys. 48 2217

    [22]

    Bäuerle D 2011 Laser Processing and Chemistry Fourth Edition (Berlin: Springer-Verlag) pp223-226

    [23]

    Li G, Cheng M S, Li X K 2014 J. Natl. Univ. Def. Technol. 36 1(in Chinese)[李干, 程谋森, 李小康2014国防科技大学学报36 1]

    [24]

    Donald E K (translated by Su Y L) 2003 The Art of Computer Programming (Vol. 2): Seminumerical Algorithms (3rd Ed.) (Beijing: National Defense Industry Press) p125(in Chinese) [唐纳德E K著(苏运霖译) 2003计算机程序设计艺术第二卷: 半数值算法(第三版)(北京: 国防工业出版社)第125页

    [25]

    Peng J 2009 M. S. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [彭杰2009硕士学位论文(合肥: 中国科学技术大学)]

  • [1] 陆云杰, 陶弢, 赵斌, 郑坚. 激光烧蚀固体碳氢材料的离子组分分离研究.  , 2023, 72(7): 075201. doi: 10.7498/aps.72.20230013
    [2] 周毛吉, 李亚举, 钱东斌, 叶晓燕, 林平, 马新文. 粒径对激光驱动颗粒溅射动力学特征的影响.  , 2022, 71(14): 145203. doi: 10.7498/aps.71.20220243
    [3] 叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平. 激光烧蚀-吸收光谱测量铀同位素比实验研究.  , 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [4] 罗乐乐, 窦志国, 叶继飞. 掺杂红外染料聚叠氮缩水甘油醚工质激光烧蚀推进性能优化探索.  , 2018, 67(18): 187901. doi: 10.7498/aps.67.20180479
    [5] 白清顺, 张凯, 沈荣琦, 张飞虎, 苗心向, 袁晓东. 单晶铁金属表面污染物的激光烧蚀机理.  , 2018, 67(23): 234401. doi: 10.7498/aps.67.20180999
    [6] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用.  , 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [7] 康小卫, 陈龙, 陈洁, 盛政明. 大气环境下飞秒激光对铝靶烧蚀过程的研究.  , 2016, 65(5): 055204. doi: 10.7498/aps.65.055204
    [8] 岱钦, 吴杰, 邬小娇, 乌日娜, 彭增辉, 李大禹. 染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究.  , 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [9] 李干, 程谋森, 李小康. 激光烧蚀聚甲醛的热-化学耦合模型及其验证.  , 2014, 63(10): 107901. doi: 10.7498/aps.63.107901
    [10] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度.  , 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [11] 刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究.  , 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [12] 常浩, 金星, 陈朝阳. 纳秒激光烧蚀冲量耦合数值模拟.  , 2013, 62(19): 195203. doi: 10.7498/aps.62.195203
    [13] 包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜. 纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究.  , 2012, 61(19): 197901. doi: 10.7498/aps.61.197901
    [14] 陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星. 数值模拟飞秒激光加热金属的热电子发射.  , 2010, 59(10): 7198-7202. doi: 10.7498/aps.59.7198
    [15] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究.  , 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [16] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响.  , 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [17] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究.  , 2008, 57(4): 2314-2319. doi: 10.7498/aps.57.2314
    [18] 张 翼, 郑志远, 李玉同, 刘 峰, 李汉明, 鲁 欣, 张 杰. 两个冲击波相互碰撞的演化过程.  , 2007, 56(10): 5931-5936. doi: 10.7498/aps.56.5931
    [19] 成金秀, 郑志坚, 陈红素, 缪文勇, 陈 波, 王耀梅, 胡 昕. 1.06μm 激光直接驱动烧蚀靶内爆压缩特性.  , 2004, 53(10): 3419-3423. doi: 10.7498/aps.53.3419
    [20] 张树东, 李海洋. 激光烧蚀Al热原子与CF4反应中C2的形成及其发光光谱研究.  , 2003, 52(5): 1297-1301. doi: 10.7498/aps.52.1297
计量
  • 文章访问数:  5938
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-12
  • 修回日期:  2016-07-06
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map