-
In this paper, the dielectric spectra of ZnO varistor ceramics are measured by Novocontrol wide band dielectric spectrometer in a temperature range of -160℃-200℃ and frequency range of 0.1 Hz-0.1 MHz. It is found that electron transportation can be characterized by the flat region on a low frequency side of σ'-f curve. The Schottky barrier height is 0.77 eV obtained from σ'-f curve, which is consistent very well with the data from I-V curves given in other literature. On the basis of back-to-back double Schottky barrier model, Schottky barrier height corresponding to electron transportation across grainboundary is explained to be the energy difference between interface state and barrier top. According to this explanation, Schottky barrier height will increase linearly with the increase of DC voltage applied. The linear variation of barrier height with the increase of DC voltage applied is confirmed experimentally. Finally, the theoretical value of averaged grain size is obtained to be 6.8 μm, which is almost identical to 6.5 μm measured from SEM images. Therefore, the macroscopic electrical properties and the microstructure can be expressed at the same time by dielectric spectra.
-
Keywords:
- ZnO varistor ceramics /
- dielectric spectra /
- Schottky barrier /
- microstructure
[1] Cheng P F, Li S T, Zhang L, Li L Y 2008 Appl. Phys. Lett. 93 012902
[2] Cheng P F, Li S T, Li J Y 2010 Acta Phys. Sin. 59 560 (in Chinese) [成鹏飞, 李盛涛, 李建英 2010 59 560]
[3] Cheng P F, Li S T, Li J Y 2009 Acta Phys. Sin. 58 5721 (in Chinese) [成鹏飞, 李盛涛, 李建英 2009 58 5721]
[4] Li S T, Cheng P F, Zhao L, Li J Y 2009 Acta Phys. Sin. 58 523 (in Chinese) [李盛涛, 成鹏飞, 赵雷, 李建英 2009 58 523]
[5] Sinclair D C, Adams T B, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2053
[6] Krohns A, Lunkenheimer P, Ebbinghaus S G, Loidl A 2008 J. Appl. Phys. 103 084107
[7] Li J Y, Li S T, Liu F Y, Alim M A 2003 J. Mater. Sci: Mater. Electron 14 483
[8] Li J Y, Li S G, Alim M A 2006 J. Mater. Sci: Mater. Electron 17 503
[9] Cheng P F, Li S T, Jiao X L 2006 Acta Phys. Sin. 55 4253 (in Chinese) [成鹏飞, 李盛涛, 焦兴六 2006 55 4253]
[10] Cheng P F, Li S T 2006 Chin. J. Mater. Res. 20 394
[11] Cheng P F, Li S T, Li J Y 2012 Adv. Mater. Res. 393-395 24
-
[1] Cheng P F, Li S T, Zhang L, Li L Y 2008 Appl. Phys. Lett. 93 012902
[2] Cheng P F, Li S T, Li J Y 2010 Acta Phys. Sin. 59 560 (in Chinese) [成鹏飞, 李盛涛, 李建英 2010 59 560]
[3] Cheng P F, Li S T, Li J Y 2009 Acta Phys. Sin. 58 5721 (in Chinese) [成鹏飞, 李盛涛, 李建英 2009 58 5721]
[4] Li S T, Cheng P F, Zhao L, Li J Y 2009 Acta Phys. Sin. 58 523 (in Chinese) [李盛涛, 成鹏飞, 赵雷, 李建英 2009 58 523]
[5] Sinclair D C, Adams T B, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2053
[6] Krohns A, Lunkenheimer P, Ebbinghaus S G, Loidl A 2008 J. Appl. Phys. 103 084107
[7] Li J Y, Li S T, Liu F Y, Alim M A 2003 J. Mater. Sci: Mater. Electron 14 483
[8] Li J Y, Li S G, Alim M A 2006 J. Mater. Sci: Mater. Electron 17 503
[9] Cheng P F, Li S T, Jiao X L 2006 Acta Phys. Sin. 55 4253 (in Chinese) [成鹏飞, 李盛涛, 焦兴六 2006 55 4253]
[10] Cheng P F, Li S T 2006 Chin. J. Mater. Res. 20 394
[11] Cheng P F, Li S T, Li J Y 2012 Adv. Mater. Res. 393-395 24
Catalog
Metrics
- Abstract views: 8069
- PDF Downloads: 965
- Cited By: 0