-
In this paper, molecular dynamics is used to simulate dynamic properties and micro-structure of the water-hydrogen particle system under various conditions: 1 atm, 293 K; pressurized water reactor (PWR) environment of 155 atm, 626 K; the number of water molecules of 256, numbers of hydrogen (H2) molecules of 0, 25, 50, 75 and 100, and the mean square displacement (MSD) in the particle system increases with the number of particles of the hydrogen increasing. Under the PWR environment, with hydrogen molecule number being 75, the MSD is about 6 times higher than that in chamber ambient. At the same time, under such a condition, the MSD of particle system increases 131.8829% higher than that in the case of the number being 0. In addition, the micro-structure of particle systems, from the view of the radial distribution functions (RDF), increase with the increase of concentration of hydrogen in chamber ambient, which coincides with the fact that the hydrogen dissolution in water increases the particle density around oxygen ions at nomal temperature and normal pressure. While in the PWR environment, the radial distributions of the water with the numbers of hydrogen molecules of 75, 50, 25 and 0 have no big change, but the radial distribution with the number of hydrogen molecules of 100 increases significantly and it is 22.0048% higher than that in the case of the number being 0. It can be seen from simulation data that hydrogen added to PWR significantly inhibits the oxygen dissolution in water. This phenomenon and its cause are revealed comprehensively in this paper.
[1] Yang Z F, Mi P Q, Zhu B Z 1988 Atomic Energy Science and Technology 22 463 (in Chinese)[杨芝风, 密培庆, 朱宝珍 1988 原子能科学技术 22 463]
[2] Fan Y S, Chen X, Zhou W, Shi S P, Li Y 2011 Acta Phys. Sin. 60 032802 (in Chinese)[范永胜, 陈旭, 周维, 史顺平, 李勇 2011 60 032802]
[3] Sinha V, Li K 2000 Desalination 127 155
[4] U.S. Department of Energy 1993 Department of Energy Fundamentals Handbook Chemistry Module 3: Reactor Water Chemitry (Washington: U.S. Department of Energy) p17
[5] Xu W J, Ma C L, Sha R L 1993 Corrosion and Protection: Corrosion and Protection in the Nuclear Industry (Beijing: Chemical Industry Press) p107 (in Chinese)[许伟钧, 马春来, 沙仁礼 1993 腐蚀与防护:核工业中的腐蚀与防护 ( 北京:化学工业出版社) p107]
[6] Yu D Q, Chen M 2006 Acta Phys. Sin. 55 1628 (in Chinese)[余大启, 陈民 2006 55 1628]
[7] Zhang R, He J, Peng Z H 2009 Acta Phys. Sin. 58 5560 (in Chinese)[张然, 何军, 彭增辉 2009 58 5560]
[8] Chen M, Hou Q 2010 Acta Phys. Sin. 59 1185 (in Chinese)[陈敏, 侯氢 2010 59 1185]
[9] Zhou J, Lu X H, Wang Y R, Shi J 1999 Acta Phys. Chim. Sin. 15 1017 (in Chinese)[周健, 陆小华, 王延儒, 时钧 1999 物理化学学报 15 1017]
[10] Zhou J, Zhu Y, Wang WC 2002 Acta Phys. Chim. Sin. 18 207 (in Chinese)[周健, 朱宇, 汪文川 2002 物理化学学报 18 207]
[11] Berendsen H J C, Postma J PM1981 Intermollecular Forces: Proceedings of the 14th Jerusalem Symposium on Qusntum Chemistry and Biochemistry (Holland: Reidel, Dordrecht) p331
[12] Zhang Y, Yang J, Yu Y X 2005 J. Supercrit. Fluids 36 145
[13] Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p4
[14] Nose S 1984 Mol. Phys. 52 255
[15] Nose S 1991 Theor. Phys. (Suppl.) 1
[16] Hernadez E 2001 J. Chem. Phys. 115 10282
[17] Ray J R, Rahman A 1984 J. Chem. Phys. 80 4423
[18] Anderson H C 1980 J. Chem. Phys. 72 2384
[19] Parrinello M, Rahman A 1981 J. Appl. Phys. 80 4423
[20] Allen M P 1987 Introduction to Molecular Dynamics Simulation (Oxford: Clarenden Press)
[21] Leeuw S W, Perram J W, Smith E R 1980 Proc. Roy. Soc. Lond
[22] Gear C W 1971 Numer Intgration of Ordinary Differential Equations (New Jersey: Prentice-Hall, Englewood Cliffs)
[23] Verlet L 1967 Phys. Rev. 159 98
[24] Swope W C, Anderson H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637
[25] Honeycutt R W 1970 Methods in Computational Physics 9 136
[26] Beeman D 1976 Journal of Computational Physics 20 130
[27] Wan L H, Yan K F, Li X S, Huang N S, Tang L G 2009 Acta Chem. Sin. 67 2149
[28] Sun W 2005 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)[孙炜 2005 博士学位论文 (武汉:华中科技大学)]
[29] Schnabel T, Srivastava A, Vrabec J J 2007 Phys. Chem. B 111 9871
-
[1] Yang Z F, Mi P Q, Zhu B Z 1988 Atomic Energy Science and Technology 22 463 (in Chinese)[杨芝风, 密培庆, 朱宝珍 1988 原子能科学技术 22 463]
[2] Fan Y S, Chen X, Zhou W, Shi S P, Li Y 2011 Acta Phys. Sin. 60 032802 (in Chinese)[范永胜, 陈旭, 周维, 史顺平, 李勇 2011 60 032802]
[3] Sinha V, Li K 2000 Desalination 127 155
[4] U.S. Department of Energy 1993 Department of Energy Fundamentals Handbook Chemistry Module 3: Reactor Water Chemitry (Washington: U.S. Department of Energy) p17
[5] Xu W J, Ma C L, Sha R L 1993 Corrosion and Protection: Corrosion and Protection in the Nuclear Industry (Beijing: Chemical Industry Press) p107 (in Chinese)[许伟钧, 马春来, 沙仁礼 1993 腐蚀与防护:核工业中的腐蚀与防护 ( 北京:化学工业出版社) p107]
[6] Yu D Q, Chen M 2006 Acta Phys. Sin. 55 1628 (in Chinese)[余大启, 陈民 2006 55 1628]
[7] Zhang R, He J, Peng Z H 2009 Acta Phys. Sin. 58 5560 (in Chinese)[张然, 何军, 彭增辉 2009 58 5560]
[8] Chen M, Hou Q 2010 Acta Phys. Sin. 59 1185 (in Chinese)[陈敏, 侯氢 2010 59 1185]
[9] Zhou J, Lu X H, Wang Y R, Shi J 1999 Acta Phys. Chim. Sin. 15 1017 (in Chinese)[周健, 陆小华, 王延儒, 时钧 1999 物理化学学报 15 1017]
[10] Zhou J, Zhu Y, Wang WC 2002 Acta Phys. Chim. Sin. 18 207 (in Chinese)[周健, 朱宇, 汪文川 2002 物理化学学报 18 207]
[11] Berendsen H J C, Postma J PM1981 Intermollecular Forces: Proceedings of the 14th Jerusalem Symposium on Qusntum Chemistry and Biochemistry (Holland: Reidel, Dordrecht) p331
[12] Zhang Y, Yang J, Yu Y X 2005 J. Supercrit. Fluids 36 145
[13] Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p4
[14] Nose S 1984 Mol. Phys. 52 255
[15] Nose S 1991 Theor. Phys. (Suppl.) 1
[16] Hernadez E 2001 J. Chem. Phys. 115 10282
[17] Ray J R, Rahman A 1984 J. Chem. Phys. 80 4423
[18] Anderson H C 1980 J. Chem. Phys. 72 2384
[19] Parrinello M, Rahman A 1981 J. Appl. Phys. 80 4423
[20] Allen M P 1987 Introduction to Molecular Dynamics Simulation (Oxford: Clarenden Press)
[21] Leeuw S W, Perram J W, Smith E R 1980 Proc. Roy. Soc. Lond
[22] Gear C W 1971 Numer Intgration of Ordinary Differential Equations (New Jersey: Prentice-Hall, Englewood Cliffs)
[23] Verlet L 1967 Phys. Rev. 159 98
[24] Swope W C, Anderson H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637
[25] Honeycutt R W 1970 Methods in Computational Physics 9 136
[26] Beeman D 1976 Journal of Computational Physics 20 130
[27] Wan L H, Yan K F, Li X S, Huang N S, Tang L G 2009 Acta Chem. Sin. 67 2149
[28] Sun W 2005 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)[孙炜 2005 博士学位论文 (武汉:华中科技大学)]
[29] Schnabel T, Srivastava A, Vrabec J J 2007 Phys. Chem. B 111 9871
Catalog
Metrics
- Abstract views: 8359
- PDF Downloads: 724
- Cited By: 0