Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broad-bandwidth and ultrafast electromagnetic response of coupled bimetal nanoantennas in few-cycle laser applications

Yang Ying-Ying Zhang Yong-Liang Zhao Zhen-Sheng Duan Xuan-Ming

Citation:

Broad-bandwidth and ultrafast electromagnetic response of coupled bimetal nanoantennas in few-cycle laser applications

Yang Ying-Ying, Zhang Yong-Liang, Zhao Zhen-Sheng, Duan Xuan-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We explore the field enhancement and temporal response of coupled bi-metal Ag/Au core-shell nanoparticle antennas. The bimetal antennas exhibit ultra-broadband resonances and allow exploiting the local field enhancement for few-cycle laser applications such as elements with an ultrafast response in nanoplasmonic device. We study dimer, trimer and heptamer arrangements and find that the Ag/Au core-shell trimer shows that a very high enhancement factor with an amplitude exceeds 120, but still facilitates an ultrafast response. Such systems may be ideal for the generation of attosecond light pulses based on high harmonic generation by employing nanoplasmonic field enhancement.
    • Funds: Project supporled by the National Basic Research Program of China (Grant No. 2010CB934103), the National Natural Science Foundation of China (Grant Nos. 61077028, 50973126), and the International Cooperation Program of the Ministry of Science and Technology (Grant Nos. 2008DA02050, 2010DFA01180).
    [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    Stockman M I, Kling M F, Kleineberg U, Krausz F 2007 Nature Phot. 1 539

    [3]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 Nature 453 757

    [4]

    Assefa S, Xia F, Vlasov Y A 2010 Nature 464 80

    [5]

    Sun Y, Xia Y 2002 Science 298 2176

    [6]

    Sundaramurthy A, Schuck P J, Conley N R, Fromm D P, Kino G S, Moerner W E 2006 Nano Lett. 6 355

    [7]

    Mock J J, Smith D R, Schultz S 2003 Nano Lett. 3 485

    [8]

    Zhang Z,Weber-Bargioni A,Wu SW, Dhuey S, Cabrini S, Schuck P J 2009 Nano Lett. 9 4505

    [9]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1984 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 58 1984]

    [10]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nature Mat. 2 229

    [11]

    Maier S, Brongersma M, Kik P, Meltzer S, Requicha A, Koel B, Atwater H 2003 Adv. Mater. 15 562

    [12]

    Guo Y N, Xue W R, Zhang W M, 2009 Acta Phys. Sin. 58 4168 (in Chinese) [郭亚楠, 薛文瑞, 张文梅 2009 58 4168]

    [13]

    Biagioni P, Polli D, Labardi M, Pucci A, Ruggeri G, Cerullo G, Finazzi M, Duo L 2005 Appl. Phys. Lett. 87 223112

    [14]

    Biagioni P, Huang J S, Duograve L, Finazzi M, Hecht B 2009 Phys. Rev. Lett. 102 256801

    [15]

    Maier S A, Kik P G, Atwater H A 2003 Phys. Rev. B 67 205402

    [16]

    Zijlstra P, Chon J W M, Gu M 2009 Nature 459 410

    [17]

    Chah S, Hammond M R, Zare R N 2005 Chem. Biol. 12 323

    [18]

    Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [郝鹏, 吴一辉, 张平 2010 59 6532]

    [19]

    Pande S, Ghosh S K, Praharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukuda T, Pal T 2007 J. Phys. Chem. C 111 10806

    [20]

    Murugadoss A, Kar M, Pasricha R, Chattopadhyay A 2009 Plasmonics 4 161

    [21]

    Douglas F, Ya?nez R, Ros J, Marín S, de la Escosura-Muñiz A, Alegret S, Merkoc? A 2008 J. Nanopart. Res. 10 97

    [22]

    Wu Y, Jiang P, Jiang M, Wang T W, Guo C F, Xie S S, Wang Z L 2009 Nanotechnology 20 305602

    [23]

    Gilbert S, George F 1973 An Analysis of The Finite Element Method. (Prentice Hall)

    [24]

    Palik E D 1985 Handbook of Optical Constants

    [25]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [26]

    Kottmann J P, Martin O J F 2000 IEEE T Antenn. Propag. 48 1719

    [27]

    Fan J A, Wu C, Bao K, Bao J, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G, Capasso F 2010 Science 328 1135

    [28]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392

    [29]

    Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov V V, Dorpe P V, Nordlander P, Maier S A 2009 Nano Lett. 9 1663

    [30]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419

    [31]

    Stebe K J, Lewandowski E, Ghosh M 2009 Science 325 159

    [32]

    Lee J H, Wu Q, Park W 2009 Opt. Lett. 34 443

    [33]

    Fan J A, Bao K, Wu C, Bao J, Bardhan R, Halas N J, Manoharan V N, Shvets G, Nordlander P, Capasso F 2010 Nano Lett. 10 4680

    [34]

    Hao F, Sonnefraud Y, Dorpe P V, Maier S A, Halas N J, Nordlander P 2008 Nano Lett. 8 3983

    [35]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614.

    [36]

    Stebbings S L, Yang Y Y, Sussmann F, Graf R, Apolonskiy A, Weber-Bargioni A, Durach M, StockmanMI, Scrinzi A, Krausz F, Kling M F 2008 In Probing Ultrafast Nano-Localized Plasmonic Fields Via XUV Light Generation Proceedings of the SPIE 2008 p 77571F

  • [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    Stockman M I, Kling M F, Kleineberg U, Krausz F 2007 Nature Phot. 1 539

    [3]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 Nature 453 757

    [4]

    Assefa S, Xia F, Vlasov Y A 2010 Nature 464 80

    [5]

    Sun Y, Xia Y 2002 Science 298 2176

    [6]

    Sundaramurthy A, Schuck P J, Conley N R, Fromm D P, Kino G S, Moerner W E 2006 Nano Lett. 6 355

    [7]

    Mock J J, Smith D R, Schultz S 2003 Nano Lett. 3 485

    [8]

    Zhang Z,Weber-Bargioni A,Wu SW, Dhuey S, Cabrini S, Schuck P J 2009 Nano Lett. 9 4505

    [9]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1984 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 58 1984]

    [10]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nature Mat. 2 229

    [11]

    Maier S, Brongersma M, Kik P, Meltzer S, Requicha A, Koel B, Atwater H 2003 Adv. Mater. 15 562

    [12]

    Guo Y N, Xue W R, Zhang W M, 2009 Acta Phys. Sin. 58 4168 (in Chinese) [郭亚楠, 薛文瑞, 张文梅 2009 58 4168]

    [13]

    Biagioni P, Polli D, Labardi M, Pucci A, Ruggeri G, Cerullo G, Finazzi M, Duo L 2005 Appl. Phys. Lett. 87 223112

    [14]

    Biagioni P, Huang J S, Duograve L, Finazzi M, Hecht B 2009 Phys. Rev. Lett. 102 256801

    [15]

    Maier S A, Kik P G, Atwater H A 2003 Phys. Rev. B 67 205402

    [16]

    Zijlstra P, Chon J W M, Gu M 2009 Nature 459 410

    [17]

    Chah S, Hammond M R, Zare R N 2005 Chem. Biol. 12 323

    [18]

    Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [郝鹏, 吴一辉, 张平 2010 59 6532]

    [19]

    Pande S, Ghosh S K, Praharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukuda T, Pal T 2007 J. Phys. Chem. C 111 10806

    [20]

    Murugadoss A, Kar M, Pasricha R, Chattopadhyay A 2009 Plasmonics 4 161

    [21]

    Douglas F, Ya?nez R, Ros J, Marín S, de la Escosura-Muñiz A, Alegret S, Merkoc? A 2008 J. Nanopart. Res. 10 97

    [22]

    Wu Y, Jiang P, Jiang M, Wang T W, Guo C F, Xie S S, Wang Z L 2009 Nanotechnology 20 305602

    [23]

    Gilbert S, George F 1973 An Analysis of The Finite Element Method. (Prentice Hall)

    [24]

    Palik E D 1985 Handbook of Optical Constants

    [25]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [26]

    Kottmann J P, Martin O J F 2000 IEEE T Antenn. Propag. 48 1719

    [27]

    Fan J A, Wu C, Bao K, Bao J, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G, Capasso F 2010 Science 328 1135

    [28]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392

    [29]

    Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov V V, Dorpe P V, Nordlander P, Maier S A 2009 Nano Lett. 9 1663

    [30]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419

    [31]

    Stebe K J, Lewandowski E, Ghosh M 2009 Science 325 159

    [32]

    Lee J H, Wu Q, Park W 2009 Opt. Lett. 34 443

    [33]

    Fan J A, Bao K, Wu C, Bao J, Bardhan R, Halas N J, Manoharan V N, Shvets G, Nordlander P, Capasso F 2010 Nano Lett. 10 4680

    [34]

    Hao F, Sonnefraud Y, Dorpe P V, Maier S A, Halas N J, Nordlander P 2008 Nano Lett. 8 3983

    [35]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614.

    [36]

    Stebbings S L, Yang Y Y, Sussmann F, Graf R, Apolonskiy A, Weber-Bargioni A, Durach M, StockmanMI, Scrinzi A, Krausz F, Kling M F 2008 In Probing Ultrafast Nano-Localized Plasmonic Fields Via XUV Light Generation Proceedings of the SPIE 2008 p 77571F

  • [1] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] Han Di-Yi, Gu Yang, Hu Tao-Zheng, Dong Wen, Ni Ya-Xian. Enhanced photocurrent in bimetallic/TiO2 nanotube composite structures. Acta Physica Sinica, 2021, 70(3): 038103. doi: 10.7498/aps.70.20201134
    [5] Zhang Jia-Chen, Yu Wei-Xing, Xiao Fa-Jun, Zhao Jian-Lin. Tuning optical force of dielectric/metal core-shell placed above Au film. Acta Physica Sinica, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [6] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [7] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [8] Zhang Bai-Fu, Zhu Kang, Wu Heng, Hu Hai-Feng, Shen Zhe, Xu Ji. Numerical study of metallic semiconductor nanolasers with double-concave cavity structures. Acta Physica Sinica, 2019, 68(22): 224201. doi: 10.7498/aps.68.20190972
    [9] Li Xin, Wu Li-Xiang, Yang Yuan-Jie. Enhanced near field focus steering of rectangular nanoslit metasurface structure. Acta Physica Sinica, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [10] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [11] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [12] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [13] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [14] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [15] Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong. Research progress of plasmonic structure illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [16] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [17] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [18] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [19] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [20] Wang Lei, Cai Wei, Tan Xin-Hui, Xiang Yin-Xiao, Zhang Xin-Zheng, Xu Jing-Jun. Effects of cross-section shape on fast electron beams excited plasmons in the surface of nanowire pairs. Acta Physica Sinica, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
Metrics
  • Abstract views:  5769
  • PDF Downloads:  434
  • Cited By: 0
Publishing process
  • Received Date:  27 February 2011
  • Accepted Date:  22 March 2011
  • Published Online:  05 January 2012

/

返回文章
返回
Baidu
map