Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate

Yan Ke-Feng Li Xiao-Sen Sun Li-Hua Chen Zhao-Yang Xia Zhi-Ming

Citation:

Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate

Yan Ke-Feng, Li Xiao-Sen, Sun Li-Hua, Chen Zhao-Yang, Xia Zhi-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Molecular dynamics(MD) simulation is used to study the promotion mechanism of store hydrogen via the hydrate formation. The stable structures and the microcosmic properties of pure H2 hydrate, H2+tetrahydrofuran (THF) hydrate, H2+tetra-n-butylammonium bromide (TBAB) and H2+tetraisoamylammonium bromide (TiAAB) semiclathrate hydrates are investigated systematically. The stabilization energy, EGH, between guest and cavity is calculated. It is shown that the large cavity of hydrate plays a main role of stabilizing hydrate. THF in large cavity can promote the stabilization of hydrogen hydrate and reduce the pressure of formation hydrogen hydrate, which are the same as the experimental results. Compared with the EGH between guest and large cavity, the results are in the order of increase as TiAAB,TBAB,THF,H2. It is concluded that the stability of semiclathrate hydrate is better than the structure Ⅱ hydrate, and H2+TiAAB semiclathrate hydrate is stablest. MD simulation provides helpful information for future TiAAB semiclathrate as a new promoter of forming hydrate and a new hydrogen storage material.
    [1]

    Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 Proc. Natl. Acad. Sci. USA 107 2801

    [2]

    Ramirez-Cuesta A J, Jones M O, David W I F 2009 Mater. Today 12 54

    [3]
    [4]

    Mao W L, Mao H, Goncharov A F, Stuzhkin V V, Guo Q, Hu J, Shu J, Hemley R J, Somayazulu M, Zhao Y 2002 Science 297 2247

    [5]
    [6]

    Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, Marsh K N, Sloan E D 2004 Science 306 469

    [7]
    [8]
    [9]

    Lokshin K A, Zhao Y, He D, Mao W L, Mao H, Hemley R J, Lobanov M V, Greenblatt M 2004 Phys. Rev. Lett. 93 125503

    [10]

    Hester K C, Strobel T A, Sloan E D, Koh C A, Huq A, Schultz A J 2006 J. Phys. Chem. B 110 14024

    [11]
    [12]

    Strobel T A, Taylor C J, Hester K C, Dec S F, Koh C A, Miller K T, Sloan E D 2006 J. Phys. Chem. B 110 17121

    [13]
    [14]
    [15]

    Dyadin Y A, Larionov E G, Manakov A Y, Zhurko F V, Aladko E Y, Mikina T V, Komarov V Y 1999 Mendeleev Commun. 5 209

    [16]

    Patchkovskii S, Tse J S 2003 Proc. Natl. Acad. Sci. USA 100 14645

    [17]
    [18]
    [19]

    Mao W L, Mao H K 2004 Proc. Natl. Acad. Sci. USA 101 708

    [20]
    [21]

    Lee H, Lee J W, Kim D Y, Park J, Seo Y T, Zeng H, Moudrakovski I L, Ratcliffe C I, Ripmeester J A 2005 Nature 434 743

    [22]
    [23]

    Anderson R, Chapoy A, Tohidi B 2007 Langmuir 23 3440

    [24]
    [25]

    Hashimoto S, Sugahara T, Sato H, Ohgaki K 2007 J. Chem. Eng. Data 52 517

    [26]

    Talyzin A 2008 Int. J. Hydrogen Ener. 33 111

    [27]
    [28]
    [29]

    Sugahara T, Haag J C, Prasad P S R, Warntjes A A, Sloan E D, Sum A K, Koh C A 2009 J. Am. Chem. Soc. 131 14616

    [30]

    Komatsu H, Yoshioka H, Ota M, Sato Y, Watanabe M, Smith R L, Peters C J 2010 J. Chem. Eng. Data 55 2214

    [31]
    [32]

    Strobel T A, Kim Y, Andrews G S, Ferrell J R, Koh C A, Herring A M, Sloan E D 2008 J. Am. Chem. Soc. 130 14975

    [33]
    [34]
    [35]

    Shin K, Kim Y, Strobel T A, Prasad P S R, Sugahara T, Lee H, Sloan E D, Sum A K, Koh C 2009 J. Phys. Chem. A 113 6415

    [36]

    Lin Y, Mao W L, Mao H K 2009 Proc. Natl. Acad. Sci. USA 106 8113

    [37]
    [38]

    Shimada W, Shiro M, Kondo H, Takeya S, Oyama H, Ebinuma T, Narita H 2005 Acta Crystallogr. C 61 O65

    [39]
    [40]
    [41]

    Hashimoto S, Murayama S, Sugahara T, Sato H, Ohgaki K 2006 Chem. Eng. Sci. 61 7884

    [42]

    Hashimoto S, Sugahara T, Moritoki M, Sato H, Ohgaki K 2008 Chem. Eng. Sci. 63 1092

    [43]
    [44]

    Chapoy A, Anderson R, Tohidi B 2007 J. Am. Chem. Soc. 129 746

    [45]
    [46]

    Sakamoto J, Hashimoto S, Tsuda T, Sugahara T, Inoue Y, Ohgaki K 2008 Chem. Eng. Sci. 63 5789

    [47]
    [48]

    Geng C Y, Wen H, Zhou H 2009 J. Phys. Chem. A 113 5463

    [49]
    [50]

    Nada H 2006 J. Phys. Chem. B 110 16526

    [51]
    [52]
    [53]

    Vatamanu J, Kusalik P G 2006 J. Phys. Chem. B 110 15896

    [54]
    [55]

    Zhang J, Hawtin R W, Yang Y, Nakagava E, Tivero M, Choi S K, Rodger P M 2008 J. Phys. Chem. B 112 10608

    [56]
    [57]

    Yang Y H, Dong S L, Wang L 2008 Chin. Phys. B 17 270

    [58]

    Yan K F, Li X S, Chen Z Y, Li G, Li Z B 2007 Acta Phys. Sin. 56 6727 (in Chinese) [颜克凤、李小森、陈朝阳、李 刚、李志宝 2007 56 6727]

    [59]
    [60]

    Freer E M, Sloan E D 2000 Ann. N.Y. Acad. Sci. 912 651

    [61]
    [62]
    [63]

    Storr M T, Taylor P C, Monfort J P, Rodge P M 2004 J. Am. Chem. Soc. 126 1569

    [64]
    [65]

    Yan K F, Mi J G, Zhong C L 2006 Acta Chim. Sin. 64 223 (in Chinese) [颜克凤、密建国、仲崇立 2006 化学学报 64 223]

    [66]
    [67]

    Kirchner M T, Boese R, Billups W E, Norman L R 2004 J. Am. Chem. Soc. 126 9407

    [68]
    [69]

    Feil D, Jeffrey G A 1961 J. Chem. Phys. 35 1863

    [70]

    Alavi S, Ripmeester J A, Klug D D 2005 J. Chem. Phys. 123 024507

    [71]
    [72]
    [73]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269

    [74]
    [75]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [76]
    [77]

    Papadimitriou N I, Tsimpanogiannis I N, Peters C J, Papaioannou A T, Stubos A K 2008 J. Phys. Chem. B 112 14206

    [78]

    Chandrasekhar J, Jorgensen W L 1982 J. Chem. Phys. 77 5073

    [79]
    [80]
    [81]

    Lindahl E, Hess B, van der Spoel D 2001 J. Mol. Model. 7(8) 306

    [82]
    [83]

    Oberbrodhage J 2000 Phys. Chem. Chem. Phys. 2 129

    [84]
    [85]

    Smith W, Yong C W, Rodger P M 2002 Mol. Simul. 28 385

    [86]

    Allen M P, Tildeslay D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p156

    [87]
    [88]
    [89]

    Nos S 1984 J. Chem. Phys. 81 511

    [90]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [91]
  • [1]

    Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 Proc. Natl. Acad. Sci. USA 107 2801

    [2]

    Ramirez-Cuesta A J, Jones M O, David W I F 2009 Mater. Today 12 54

    [3]
    [4]

    Mao W L, Mao H, Goncharov A F, Stuzhkin V V, Guo Q, Hu J, Shu J, Hemley R J, Somayazulu M, Zhao Y 2002 Science 297 2247

    [5]
    [6]

    Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, Marsh K N, Sloan E D 2004 Science 306 469

    [7]
    [8]
    [9]

    Lokshin K A, Zhao Y, He D, Mao W L, Mao H, Hemley R J, Lobanov M V, Greenblatt M 2004 Phys. Rev. Lett. 93 125503

    [10]

    Hester K C, Strobel T A, Sloan E D, Koh C A, Huq A, Schultz A J 2006 J. Phys. Chem. B 110 14024

    [11]
    [12]

    Strobel T A, Taylor C J, Hester K C, Dec S F, Koh C A, Miller K T, Sloan E D 2006 J. Phys. Chem. B 110 17121

    [13]
    [14]
    [15]

    Dyadin Y A, Larionov E G, Manakov A Y, Zhurko F V, Aladko E Y, Mikina T V, Komarov V Y 1999 Mendeleev Commun. 5 209

    [16]

    Patchkovskii S, Tse J S 2003 Proc. Natl. Acad. Sci. USA 100 14645

    [17]
    [18]
    [19]

    Mao W L, Mao H K 2004 Proc. Natl. Acad. Sci. USA 101 708

    [20]
    [21]

    Lee H, Lee J W, Kim D Y, Park J, Seo Y T, Zeng H, Moudrakovski I L, Ratcliffe C I, Ripmeester J A 2005 Nature 434 743

    [22]
    [23]

    Anderson R, Chapoy A, Tohidi B 2007 Langmuir 23 3440

    [24]
    [25]

    Hashimoto S, Sugahara T, Sato H, Ohgaki K 2007 J. Chem. Eng. Data 52 517

    [26]

    Talyzin A 2008 Int. J. Hydrogen Ener. 33 111

    [27]
    [28]
    [29]

    Sugahara T, Haag J C, Prasad P S R, Warntjes A A, Sloan E D, Sum A K, Koh C A 2009 J. Am. Chem. Soc. 131 14616

    [30]

    Komatsu H, Yoshioka H, Ota M, Sato Y, Watanabe M, Smith R L, Peters C J 2010 J. Chem. Eng. Data 55 2214

    [31]
    [32]

    Strobel T A, Kim Y, Andrews G S, Ferrell J R, Koh C A, Herring A M, Sloan E D 2008 J. Am. Chem. Soc. 130 14975

    [33]
    [34]
    [35]

    Shin K, Kim Y, Strobel T A, Prasad P S R, Sugahara T, Lee H, Sloan E D, Sum A K, Koh C 2009 J. Phys. Chem. A 113 6415

    [36]

    Lin Y, Mao W L, Mao H K 2009 Proc. Natl. Acad. Sci. USA 106 8113

    [37]
    [38]

    Shimada W, Shiro M, Kondo H, Takeya S, Oyama H, Ebinuma T, Narita H 2005 Acta Crystallogr. C 61 O65

    [39]
    [40]
    [41]

    Hashimoto S, Murayama S, Sugahara T, Sato H, Ohgaki K 2006 Chem. Eng. Sci. 61 7884

    [42]

    Hashimoto S, Sugahara T, Moritoki M, Sato H, Ohgaki K 2008 Chem. Eng. Sci. 63 1092

    [43]
    [44]

    Chapoy A, Anderson R, Tohidi B 2007 J. Am. Chem. Soc. 129 746

    [45]
    [46]

    Sakamoto J, Hashimoto S, Tsuda T, Sugahara T, Inoue Y, Ohgaki K 2008 Chem. Eng. Sci. 63 5789

    [47]
    [48]

    Geng C Y, Wen H, Zhou H 2009 J. Phys. Chem. A 113 5463

    [49]
    [50]

    Nada H 2006 J. Phys. Chem. B 110 16526

    [51]
    [52]
    [53]

    Vatamanu J, Kusalik P G 2006 J. Phys. Chem. B 110 15896

    [54]
    [55]

    Zhang J, Hawtin R W, Yang Y, Nakagava E, Tivero M, Choi S K, Rodger P M 2008 J. Phys. Chem. B 112 10608

    [56]
    [57]

    Yang Y H, Dong S L, Wang L 2008 Chin. Phys. B 17 270

    [58]

    Yan K F, Li X S, Chen Z Y, Li G, Li Z B 2007 Acta Phys. Sin. 56 6727 (in Chinese) [颜克凤、李小森、陈朝阳、李 刚、李志宝 2007 56 6727]

    [59]
    [60]

    Freer E M, Sloan E D 2000 Ann. N.Y. Acad. Sci. 912 651

    [61]
    [62]
    [63]

    Storr M T, Taylor P C, Monfort J P, Rodge P M 2004 J. Am. Chem. Soc. 126 1569

    [64]
    [65]

    Yan K F, Mi J G, Zhong C L 2006 Acta Chim. Sin. 64 223 (in Chinese) [颜克凤、密建国、仲崇立 2006 化学学报 64 223]

    [66]
    [67]

    Kirchner M T, Boese R, Billups W E, Norman L R 2004 J. Am. Chem. Soc. 126 9407

    [68]
    [69]

    Feil D, Jeffrey G A 1961 J. Chem. Phys. 35 1863

    [70]

    Alavi S, Ripmeester J A, Klug D D 2005 J. Chem. Phys. 123 024507

    [71]
    [72]
    [73]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269

    [74]
    [75]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [76]
    [77]

    Papadimitriou N I, Tsimpanogiannis I N, Peters C J, Papaioannou A T, Stubos A K 2008 J. Phys. Chem. B 112 14206

    [78]

    Chandrasekhar J, Jorgensen W L 1982 J. Chem. Phys. 77 5073

    [79]
    [80]
    [81]

    Lindahl E, Hess B, van der Spoel D 2001 J. Mol. Model. 7(8) 306

    [82]
    [83]

    Oberbrodhage J 2000 Phys. Chem. Chem. Phys. 2 129

    [84]
    [85]

    Smith W, Yong C W, Rodger P M 2002 Mol. Simul. 28 385

    [86]

    Allen M P, Tildeslay D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p156

    [87]
    [88]
    [89]

    Nos S 1984 J. Chem. Phys. 81 511

    [90]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [91]
  • [1] Qin Meng-Fei, Wang Ying-Min, Zhang Hong-Yu, Sun Ji-Zhong. Molecular dynamics simulation of dynamic migration of $\boldsymbol {\langle 100\rangle} $ interstitial dislocation loops under (010) surfaces of pure W and W containing helium impurity. Acta Physica Sinica, 2023, 72(24): 245204. doi: 10.7498/aps.72.20230651
    [2] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [3] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [4] Yuan Li-Hua, Gong Ji-Jun, Wang Dao-Bin, Zhang Cai-Rong, Zhang Mei-Ling, Su Jun-Yan, Kang Long. Hydrogen storage capacity of alkali metal atoms decorated porous graphene. Acta Physica Sinica, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [5] Wei Zhao-Zhao, Ma Xiao, Ke Chang-Bo, Zhang Xin-Ping. Molecular dynamics simulation of migration behavior of FCC-BCC atomic terrace-step phase boundary in iron-based alloy. Acta Physica Sinica, 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [6] Yin Yue-Hong, Xu Hong-Ping. Theoretical study on the hydrogen storage properties of (MgO)4 under external electric field. Acta Physica Sinica, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [7] Zhou Xiao-Feng, Fang Hao-Yu, Tang Chun-Mei. Hydrogen storage capacity of expanded sandwich structure graphene-2Li-graphene. Acta Physica Sinica, 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [8] Qi Peng-Tang, Chen Hong-Shan. Hydrogen storage properties of Li-decorated C24 clusters. Acta Physica Sinica, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [9] Yin Yue-Hong, Chen Hong-Shan, Song Yan. The electric field effect on the hydrogen storage of (MgO)12 by ab intio calculations. Acta Physica Sinica, 2015, 64(19): 193601. doi: 10.7498/aps.64.193601
    [10] Zhang Yun-An, Tao Jun-Yong, Chen Xun, Liu Bin. Influence of water on the tensile properties of amorphous silica:a reactive molecular dynamics simulation. Acta Physica Sinica, 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [11] Dong Lei, Wang Wei-Guo. Molecular dynamics simulation on the struatural stability of [0 1 1] tilt incoherent 3 gain boundaries in pure copper. Acta Physica Sinica, 2013, 62(15): 156102. doi: 10.7498/aps.62.156102
    [12] Li Lin, Wang Xuan, Sun Wei-Feng, Lei Qing-Quan. Molecular dynamics simulation of polyethylene/silver-nanoparticle composites. Acta Physica Sinica, 2013, 62(10): 106201. doi: 10.7498/aps.62.106201
    [13] Sun Wei-Feng, Wang Xuan. Molecular dynamics simulation study of polyimide/copper-nanoparticle composites. Acta Physica Sinica, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [14] Shen Chao, Hu Ya-Ting, Zhou Shuo, Ma Xiao-Lan, Li Hua. The grand canonical Monte Carlo simulation of hydrogen physisorption on single-walled carbon nanotubes at the low and normal temperatures. Acta Physica Sinica, 2013, 62(3): 038801. doi: 10.7498/aps.62.038801
    [15] Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Xu Chun-Gang. Molecular dynamics simulation of CO2 separation from integrated gasification combined cycle syngas via the hydrate formation. Acta Physica Sinica, 2010, 59(6): 4313-4321. doi: 10.7498/aps.59.4313
    [16] Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Li Gang, Tang Liang-Guang, Fan Shuan-Shi. Molecular dynamics simulation of methane hydrate dissociation by thermal stimulation. Acta Physica Sinica, 2007, 56(8): 4994-5002. doi: 10.7498/aps.56.4994
    [17] Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Li Gang, Li Zhi-Bao. Molecular dynamics simulation of methane hydrate dissociation by thermal stimulation in conjunction with chemical injection method. Acta Physica Sinica, 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [18] Yang Hong, Chen Min. A molecular dynamics simulation of thermodynamic properties of undercooled liquid Ni2TiAl alloy. Acta Physica Sinica, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [19] He Lan, Shen Yun-Wen, K. L. Yung, Xu Yan. A new molecular model for main-chain liquid crystalline polymers based on molecular dynamics simulations. Acta Physica Sinica, 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [20] Zheng Hong, Wang Shao-Qing, Cheng Hui-Ming. Effect of micropore on hydrogen adsorption of single walled carbon nanotubes. Acta Physica Sinica, 2005, 54(10): 4852-4856. doi: 10.7498/aps.54.4852
Metrics
  • Abstract views:  9398
  • PDF Downloads:  861
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2011
  • Accepted Date:  27 June 2011
  • Published Online:  05 June 2011

/

返回文章
返回
Baidu
map