Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of CO2 separation from integrated gasification combined cycle syngas via the hydrate formation

Yan Ke-Feng Li Xiao-Sen Chen Zhao-Yang Xu Chun-Gang

Citation:

Molecular dynamics simulation of CO2 separation from integrated gasification combined cycle syngas via the hydrate formation

Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Xu Chun-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Molecular dynamics (MD) simulation is used to study the microscopic mechanism of CO2 separation from integrated gasification combined cycle(IGCC) syngas (CO2/H2) via the hydrate formation. The stable structures and microscopic properties of CO2 hydrate, H2 hydrate, and CO2/H2 hydrate from one stage separation for IGCC syngas are investigated systematically. The binding energy for loading the hydrate structure with the guest molecules, ΔEn, was analyzed. It was shown that the binding between CO2 and water is more stable than that between H2 and water. That is, CO2 can more easily form the hydrate. Therefore, CO2 in the CO2/H2 gas mixture more easily transfers into the hydrate phase. Based on this, CO2 can be separated from the IGCC syngas. The binding energy for loading the single cavity with the guest molecules, ΔEGH, was analyzed. It was found that the gas mixture can form structure Ⅰ(SⅠ) hydrate, in which CO2 molecules preferably occupy the big cavity and then occupy the small cavity, and H2 molecules only occupy the small cavity. The simulation was carried out at pressure of 85 MPa and temperature of 2737 K for the stable structure of the CO2/H2 hydrate in one stage separation for IGCC syngas. From the ΔEn and ΔEGH of the systems with H2 single and double occupancy in the small cavity, it is concluded that the configurations with the single occupancy is most stable. The stable structure of the hydrate in one stage separation is attained by MD. It provides a theoretical evidence of CO2 separation for formation hydrate in IGCC syngas.
    [1]

    [1]Perinline H W, Luebke D R, Jones K L, Myers C R, Morsi B I, Heintz Y J, Ilconich J B 2008 Fuel. Process. Technol. 89 897

    [2]

    [2]Aaron D, Tsouris C 2005 Sep. Sci. Technol. 40 321

    [3]

    [3]Ishida M, Zheng D, Akehata T 1987 Energy 12 147

    [4]

    [4]Winnick J, Toghiani H, Quattrone P 1982 AICHE J. 28 103

    [5]

    [5]Linga P, Kumar R, Englezos P 2007 J. Hazard. Mater. 149 625

    [6]

    [6]Glew D N 1966 U. S. Patent 3231630

    [7]

    [7]Elliot D G, Chen J J 1977 U. S. Patent 5660603

    [8]

    [8]Happel J, Hnatow M A, Meyer H 1994 Ann. N. Y. Acad. Sci. 715 412

    [9]

    [9]Kang S P, Lee H, Lee C S, Sung W M 2001 Fluid Phase Equilib. 185 101

    [10]

    ]Park J, Seo Y T, Lee J W, Lee H 2006 Catal. Today. 115 279

    [11]

    ]Ma C F, Chen G J, Zhang S X, Wang F, Guo T M 2001 J. Chem. Ind. Eng. 52 1113 (in Chinese) [马昌峰、陈光进、张世喜、王峰、郭天民 2001 化工学报 52 1113]

    [12]

    ]Zhang S X, Chen G J, Guo T M 2004 J. Univ. Petrol. 28 95 (in Chinese) [张世喜、陈光进、郭天民 2004 石油大学学报 28 95]

    [13]

    ]Li D L, Du J W, Fan S S, Liang D Q, Li X S, Huang N S 2007 J. Chem. Eng. Data 52 1916

    [14]

    ]Li X S, Lu T, Chen Z Y, Yan K F, Li G 2009 Mod. Chem. Ind. 29(10) 37 (in Chinese)[李小森、鲁涛、陈朝阳、颜克凤、李刚 2009 现代化工 29(10) 37]

    [15]

    ]Zhu C Z, Zhang P X, Xu Q M, Liu J H, Ren X Z, Zhang Q L, Hong W L, Li L L 2006 Acta Phys. Sin. 55 4795 (in Chinese) [朱才镇、张培新、许启明、刘剑洪、任祥忠、张黔玲、洪伟良、李琳琳 2006 55 4795]

    [16]

    ]Geng C Y, Wang C Y, Zhu T 2005 Acta Phys. Sin. 54 1320(in Chinese) [耿翠玉、王崇愚、朱弢 2005 54 1320]

    [17]

    ]Chen M J, Liang Y C, Li H Z, Li D 2006 Chin. Phys. 15 2087

    [18]

    ]Alavi S, Ripmeester J A, Klug D D 2005 J. Chem. Phys. 123 024507

    [19]

    ]Geng C Y, Wen H, Zhou H 2009 J. Phys. Chem. A 113 5463

    [20]

    ]Chialvo A A, Houssa M, Cummings P T 2002 J. Phys. Chem. B 106 442

    [21]

    ]Mao W L, Mao H K, Goncharov A F, Struzhkin V V, Guo Q Z, Hu J Z, Shu J F, Hemley R J, Somayazulu M, Zhao Y S 2002 Science 297 2247

    [22]

    ]Storr M T, Taylor P C, Monfort J P, Eodger P M 2004 J. Am. Chem. Soc. 126 1569

    [23]

    ]Yan K F, Li X S, Chen Z Y, Li G, Tang L G, Fan S S 2007 Acta Phys. Sin. 56 4994 (in Chinese) [颜克凤、李小森、陈朝阳、李刚、唐良广、樊栓狮 2007 56 4994]

    [24]

    ]Kirchner M T, Boese R, Billups W E, Norman L R 2004 J. Am. Chem. Soc. 126 9407

    [25]

    ]Smith W, Yong C W, Rodger P M 2002 Mol. Simul. 28 385

    [26]

    ]Berendsen H J C, Postma J P M, van Gunsteren W F, Hermans J 1981 In Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry (Dordrecht: D. Reidel Publishing Co.) p331

    [27]

    ]Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [28]

    ]Dauber O P, Roberts V A, Osguthorpe D J, Wolff J, Genest M, Hagler A T 1988 Proteins: Struct. Funct. Genet. 4 31

    [29]

    ]Ewald P P 1921 Ann. Phys. 64 253

    [30]

    ]Allen M P, Tildeslay D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p156

    [31]

    ]Nose S A 1984 Mol. Phys. 52 255

    [32]

    ]Chen Z L, Xu W R, Tang L D 2007 Practice and Theory of Molecular Simulation (Beijing: Chemical Industry Press) p4 (in Chinese) [陈正隆、徐为人、汤立达 2007 分子模拟的理论与实践 (北京: 化学工业出版社) 第4页]

    [33]

    ]Cygan R T, Guggenheim S, van Groos A F K 2004 J. Phys. Chem. B 108 15141

    [34]

    ]Greathouse J A, Cygan R T 2008 The 6th International Conference on Gas Hydrates (Vancouver: British Columbia) p5529

    [35]

    ]Udachin K A, Ratcliffc C I, Ripmeester J A 2001 J. Phys. Chem. B 105 4200

    [36]

    ]Zhou Z E, Xue C Y, Yang Q Y, Zhong C L 2009 Acta Chim. Sin. 67 477 (in Chinese) [周子娥、薛春瑜、阳庆元、仲崇立 2009 化学学报 67 477]

    [37]

    ]Zhang L, Wang Q, Liu Y 2007 J. Phys. Chem. B 111 4291

    [38]

    ]Babarao R, Jiang J W 2008 Langmuir 24 6270

    [39]

    ]Ota M, Ferdows M 2005 JSME Int. J. 48 802

    [40]

    ]Van Klaveren E P, Michels J P J, Schouten J A 2001 J. Chem. Phys. 115 10500

    [41]

    ]Kim D Y, Lee H 2005 J. Am. Chem. Soc. 127 9996

  • [1]

    [1]Perinline H W, Luebke D R, Jones K L, Myers C R, Morsi B I, Heintz Y J, Ilconich J B 2008 Fuel. Process. Technol. 89 897

    [2]

    [2]Aaron D, Tsouris C 2005 Sep. Sci. Technol. 40 321

    [3]

    [3]Ishida M, Zheng D, Akehata T 1987 Energy 12 147

    [4]

    [4]Winnick J, Toghiani H, Quattrone P 1982 AICHE J. 28 103

    [5]

    [5]Linga P, Kumar R, Englezos P 2007 J. Hazard. Mater. 149 625

    [6]

    [6]Glew D N 1966 U. S. Patent 3231630

    [7]

    [7]Elliot D G, Chen J J 1977 U. S. Patent 5660603

    [8]

    [8]Happel J, Hnatow M A, Meyer H 1994 Ann. N. Y. Acad. Sci. 715 412

    [9]

    [9]Kang S P, Lee H, Lee C S, Sung W M 2001 Fluid Phase Equilib. 185 101

    [10]

    ]Park J, Seo Y T, Lee J W, Lee H 2006 Catal. Today. 115 279

    [11]

    ]Ma C F, Chen G J, Zhang S X, Wang F, Guo T M 2001 J. Chem. Ind. Eng. 52 1113 (in Chinese) [马昌峰、陈光进、张世喜、王峰、郭天民 2001 化工学报 52 1113]

    [12]

    ]Zhang S X, Chen G J, Guo T M 2004 J. Univ. Petrol. 28 95 (in Chinese) [张世喜、陈光进、郭天民 2004 石油大学学报 28 95]

    [13]

    ]Li D L, Du J W, Fan S S, Liang D Q, Li X S, Huang N S 2007 J. Chem. Eng. Data 52 1916

    [14]

    ]Li X S, Lu T, Chen Z Y, Yan K F, Li G 2009 Mod. Chem. Ind. 29(10) 37 (in Chinese)[李小森、鲁涛、陈朝阳、颜克凤、李刚 2009 现代化工 29(10) 37]

    [15]

    ]Zhu C Z, Zhang P X, Xu Q M, Liu J H, Ren X Z, Zhang Q L, Hong W L, Li L L 2006 Acta Phys. Sin. 55 4795 (in Chinese) [朱才镇、张培新、许启明、刘剑洪、任祥忠、张黔玲、洪伟良、李琳琳 2006 55 4795]

    [16]

    ]Geng C Y, Wang C Y, Zhu T 2005 Acta Phys. Sin. 54 1320(in Chinese) [耿翠玉、王崇愚、朱弢 2005 54 1320]

    [17]

    ]Chen M J, Liang Y C, Li H Z, Li D 2006 Chin. Phys. 15 2087

    [18]

    ]Alavi S, Ripmeester J A, Klug D D 2005 J. Chem. Phys. 123 024507

    [19]

    ]Geng C Y, Wen H, Zhou H 2009 J. Phys. Chem. A 113 5463

    [20]

    ]Chialvo A A, Houssa M, Cummings P T 2002 J. Phys. Chem. B 106 442

    [21]

    ]Mao W L, Mao H K, Goncharov A F, Struzhkin V V, Guo Q Z, Hu J Z, Shu J F, Hemley R J, Somayazulu M, Zhao Y S 2002 Science 297 2247

    [22]

    ]Storr M T, Taylor P C, Monfort J P, Eodger P M 2004 J. Am. Chem. Soc. 126 1569

    [23]

    ]Yan K F, Li X S, Chen Z Y, Li G, Tang L G, Fan S S 2007 Acta Phys. Sin. 56 4994 (in Chinese) [颜克凤、李小森、陈朝阳、李刚、唐良广、樊栓狮 2007 56 4994]

    [24]

    ]Kirchner M T, Boese R, Billups W E, Norman L R 2004 J. Am. Chem. Soc. 126 9407

    [25]

    ]Smith W, Yong C W, Rodger P M 2002 Mol. Simul. 28 385

    [26]

    ]Berendsen H J C, Postma J P M, van Gunsteren W F, Hermans J 1981 In Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry (Dordrecht: D. Reidel Publishing Co.) p331

    [27]

    ]Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [28]

    ]Dauber O P, Roberts V A, Osguthorpe D J, Wolff J, Genest M, Hagler A T 1988 Proteins: Struct. Funct. Genet. 4 31

    [29]

    ]Ewald P P 1921 Ann. Phys. 64 253

    [30]

    ]Allen M P, Tildeslay D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p156

    [31]

    ]Nose S A 1984 Mol. Phys. 52 255

    [32]

    ]Chen Z L, Xu W R, Tang L D 2007 Practice and Theory of Molecular Simulation (Beijing: Chemical Industry Press) p4 (in Chinese) [陈正隆、徐为人、汤立达 2007 分子模拟的理论与实践 (北京: 化学工业出版社) 第4页]

    [33]

    ]Cygan R T, Guggenheim S, van Groos A F K 2004 J. Phys. Chem. B 108 15141

    [34]

    ]Greathouse J A, Cygan R T 2008 The 6th International Conference on Gas Hydrates (Vancouver: British Columbia) p5529

    [35]

    ]Udachin K A, Ratcliffc C I, Ripmeester J A 2001 J. Phys. Chem. B 105 4200

    [36]

    ]Zhou Z E, Xue C Y, Yang Q Y, Zhong C L 2009 Acta Chim. Sin. 67 477 (in Chinese) [周子娥、薛春瑜、阳庆元、仲崇立 2009 化学学报 67 477]

    [37]

    ]Zhang L, Wang Q, Liu Y 2007 J. Phys. Chem. B 111 4291

    [38]

    ]Babarao R, Jiang J W 2008 Langmuir 24 6270

    [39]

    ]Ota M, Ferdows M 2005 JSME Int. J. 48 802

    [40]

    ]Van Klaveren E P, Michels J P J, Schouten J A 2001 J. Chem. Phys. 115 10500

    [41]

    ]Kim D Y, Lee H 2005 J. Am. Chem. Soc. 127 9996

  • [1] Zhou Han, Geng Yi-Zhao, Yan Shi-Wei. Effect of Nutlin-3a on stability of p53-MDM2 complex. Acta Physica Sinica, 2023, 72(6): 068702. doi: 10.7498/aps.72.20222441
    [2] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [3] Shen Tian-Zhan, Song Hai-Yang, An Min-Rong. Effect of twin boundary on mechanical behavior of Cr26Mn20Fe20Co20Ni14 high-entropy alloy by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [4] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [5] He Yu-Chen, Liu Xiang-Jun. Simulation studies on the transport properties of Cu-H2O nanofluids based on water continuum assumption. Acta Physica Sinica, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [6] Yuan Si-Wei, Feng Yan-Hui, Wang Xin, Zhang Xin-Xin. Molecular dynamics simulation of thermal conductivity of mesoporous α-Al2O3. Acta Physica Sinica, 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [7] Qi Yu, Qu Chang-Rong, Wang Li, Fang Teng. Liquid-liquid phase segregation process of Fe50Cu50 melt by molecular dynamics simulation. Acta Physica Sinica, 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [8] Li Lin, Wang Xuan, Sun Wei-Feng, Lei Qing-Quan. Molecular dynamics simulation of polyethylene/silver-nanoparticle composites. Acta Physica Sinica, 2013, 62(10): 106201. doi: 10.7498/aps.62.106201
    [9] Zhang Yun-An, Tao Jun-Yong, Chen Xun, Liu Bin. Influence of water on the tensile properties of amorphous silica:a reactive molecular dynamics simulation. Acta Physica Sinica, 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [10] Sun Wei-Feng, Wang Xuan. Molecular dynamics simulation study of polyimide/copper-nanoparticle composites. Acta Physica Sinica, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [11] Zhang Ying-Jie, Xiao Xu-Yang, Li Yong-Qiang, Yan Yun-Hui. Molecular dynamics simulation of the influence of Cu(010) substrate on the melting of supported Co-Cu bimetallic clusters. Acta Physica Sinica, 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [12] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing. Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [13] Yan Ke-Feng, Li Xiao-Sen, Sun Li-Hua, Chen Zhao-Yang, Xia Zhi-Ming. Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate. Acta Physica Sinica, 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [14] Li Mei-Li, Fu Xing-Ye, Sun Hong-Ning, Zhao Hong-An, Li Cong, Duan Yong-Ping, Yan Yuan, Sun Min-Hua. Molecular dynamics investigation of the glass transition at high-pressure in the phase separation liquid. Acta Physica Sinica, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [15] Liu Rui, Li Yin-Chang, Hou Mei-Ying. Phase separation in a three-dimensional granular gas system. Acta Physica Sinica, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [16] Li Mei-Li, Zhang Di, Sun Hong-Ning, Fu Xing-Ye, Yao Xiu-Wei, Li Cong, Duan Yong-Ping, Yan Yuan, Mu Hong-Chen, Sun Min-Hua. Molecular dynamics study of the phase separation and diffusion in Lennard-Jones binary liquid. Acta Physica Sinica, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [17] Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Li Gang, Tang Liang-Guang, Fan Shuan-Shi. Molecular dynamics simulation of methane hydrate dissociation by thermal stimulation. Acta Physica Sinica, 2007, 56(8): 4994-5002. doi: 10.7498/aps.56.4994
    [18] Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Li Gang, Li Zhi-Bao. Molecular dynamics simulation of methane hydrate dissociation by thermal stimulation in conjunction with chemical injection method. Acta Physica Sinica, 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [19] He Lan, Shen Yun-Wen, K. L. Yung, Xu Yan. A new molecular model for main-chain liquid crystalline polymers based on molecular dynamics simulations. Acta Physica Sinica, 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [20] Yang Hong, Chen Min. A molecular dynamics simulation of thermodynamic properties of undercooled liquid Ni2TiAl alloy. Acta Physica Sinica, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
Metrics
  • Abstract views:  8853
  • PDF Downloads:  795
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2009
  • Accepted Date:  26 October 2009
  • Published Online:  05 March 2010

/

返回文章
返回
Baidu
map