-
利用密度泛函理论研究了Li原子修饰的C24团簇的储氢性能. Li原子在C24团簇表面的最佳结合位是五元环. Li原子与C24团簇之间的作用强于Li原子之间的相互作用, 能阻止它们在团簇表面发生聚集. 当Li原子结合到C24表面时, 它们向C原子转移电子后带正电荷. 当氢分子接近这些Li原子时, 在电场作用下发生极化, 通过静电相互作用吸附在Li原子周围. 在Li修饰的C24复合物中, 每个Li原子能吸附两到三个氢分子, 平均吸附能处于0.08到0.13 eV/H2范围内. C24Li6能吸附12个氢分子, 储氢密度达到6.8 wt%.
-
关键词:
- Li修饰的C24团簇 /
- 储氢 /
- 吸附能 /
- 密度泛函理论
Hydrogen is considered as a potentially ideal substitution for fossil fuels in the future sustainable energy system because it is an abundant, clean and renewable energy carrier. A safe, efficient and economic storage method is the crucial prerequistite and the biggest challenge for the wide scale use of hydrogen. The nanomaterial is one of the most promising hydrogen storage materials because of its high surface to volume ratio, unique electronic structure and novel chemical and physical properties. It has been demonstrated that pristine nanostructures are not suitable for hydrogen storage, since they interact weakly with hydrogen molecule and their hydrogen storage density is very low. However, the hydrogen storage capacity of the nanostructures can be significantly enhanced through substitutional doping or decoration by metal atoms. Using density functional theory, we investigate the properties of hydrogen adsorption on Li-decorated C24clusters. Results show that the preferred binding site for Li atom is the pentagonal rings. The interaction of Li atoms with the clusters is stronger than that among Li atoms, thus hindering effectively aggregation of Li atoms on the surface of the cluster. The decorated Li atoms are positively charged due to electron transfer from Li to C atoms. When H2 molecules approach Li atoms, they are moderately polarized under the electric field, and adsorbed around the Li atoms in molecular form. Each Li atom in the Li-decorated C24 complexes can adsorb two to three H2 molecules. The H-H bond lengths of the adsorbed H2 molecules are slightly stretched. The average adsorption energies are in the range of 0.08 to 0.13 eV/H2, which are intermediate between physisorption and chemisorption. C24Li6 can hold up to 12 H2 molecules, corresponding to a hydrogen uptake density of 6.8 wt%. This value exceeds the 2020 hydrogen storage target of 5.5 wt% proposed by the U. S. Department of Energy.-
Keywords:
- Li-decorated C24 cluster /
- hydrogen storage /
- adsorption energy /
- density functional theory
[1] Lubitz W, Tumas W 2007 Chem. Rev. 107 3900
[2] Crabtree G W, Dresselhaus M S, Buchanan M V 2004 Phys. Today 57 39
[3] Schlapbach L, Zttel A 2001 Natrue 414 353
[4] Chen P, Zhu M 2008 Mater. Today 11 36
[5] Graetz J 2009 Chem. Soc. Rev. 38 73
[6] Jena P 2011 J. Phys. Chem. Lett. 2 206
[7] Liu X Y, He J, Yu J X, Li Z X, Fan Z Q 2014 Chin. Phy. B 23 067303
[8] Bhatia S K, Myers A L 2006 Langmuir 221688
[9] Lochan R C, Gordon M H 2006 Phys. Chem. Chem. Phys. 8 1357
[10] Eberle U, Felderhoff M, Schth F 2009 Angew. Chem. Int. Ed. 48 6608
[11] Park N, Hong S, Kim G, Jhi S H 2007 J. Am. Chem. Soc. 129 8999
[12] U. S. Department of Energy, Hydrogen, fuel cells program: FY 2014 Annual Progress Report
[13] Yang J, Sudik A, Wolvertonb C, Siegel D J 2010 Chem. Soc. Rev. 39 656
[14] Mandal T K, Gregory D H 2009 Annu. Rep. Prog. Chem. Sect. A 105 21
[15] Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 62 137301]
[16] Lu Q L, Huang S G, Li Y D 2013 Acta Phys. Sin. 62 213601 (in Chinese) [卢其亮, 黄守国, 李宜德 2013 62 213601]
[17] Tang C M, Wang C J, Gao F Z, Zhang Y J, Xu Y, Gong J F 2015 Acta Phys. Sin. 64 096103 (in Chinese) [唐春梅, 王成杰, 高凤志, 张轶杰, 徐燕, 巩江峰 2015 64 096103]
[18] Schur D V, Zaginaichenko S Y, Savenko A F, Bogolepov V A, Anikina N S, Zolotarenko A D, Matysina Z A, Veziroglu T N, Skryabina N E 2011 Int. J. Hydrogen Energy 36 1143
[19] Henwood D, Carey J D 2007 Phys. Rev. B 75 245413
[20] Zhou Z, Zhao J J, Chen Z F, Gao X P, Yan T Y, Wen B, Schleyer P V 2006 J. Phys. Chem. B 110 13363
[21] Kim Y H, Zhao Y Y, Wiiliamson A, Heben M J, Zhang S B 2006 Phys. Rev. Lett. 96 016102
[22] Guo Y H, Jiang K, Xu B, Xia Y. D, Yin J, Liu Z G 2012 J. Phys. Chem. C 116 13837
[23] Pupysheva O V, Farajian A A, Yakobson B I 2008 Nano Lett. 8 767
[24] Wu M H, Gao Y, Zhang Z Y, Zeng X C 2012 Nanoscale 4 915
[25] Giri S, Lund F, Núñez A S, Toro-Labbé A 2013 J. Phys. Chem. C 117 5544
[26] Li M, Li Y F, Zhou Z, Shen P W, Chen Z F 2009 Nano Lett. 9 1944
[27] An H, Liu C S, Zeng Z 2011 Phys. Rev. B 83 115456
[28] Tai T B, Nguyen M T 2013 Chem. Commun. 49 913
[29] Durgun E, Jang Y R, Ciraci S 2007 Phys. Rev. B 76 073413
[30] Venkataramanan N S, Belosludov R V, Note R, Sahara R, Mizuseki H, Kawazoe Y 2010 Chem. Phys. 377 54
[31] Lee H, Li J, Zhou G, Duan W, Kim G, lhm J 2008 Phys. Rev. B 77 235101
[32] Chung T C M, Jeong Y, Chen Q, Kleinhammes A, Wu Y 2008 J. Am. Chem. Soc. 130 6668
[33] Chen X W, Yuan F, Gu Q F, Yu X B 2013 J. Mater. Chem. A 1 11705
[34] Yildrim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501
[35] Zhao Y F, Kim Y H, Dillon A C, Heben J M, Zhang S B 2005 Phys. Rev. Lett. 94 155504
[36] Shin W H, Yang S H, Goddard W A, Kang J K 2006 Appl. Phys. Lett. 88 053111
[37] Sun Q, Wang Q, Jena P 2005 J. Am. Chem. Soc. 127 14582
[38] Venkataramanan N S, Khazaei M, Sahara R, Mizuseki H, Kawazoe Y 2009 Chem. Phys. 359 173
[39] Guo J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107
[40] Pan H Z, Wang Y L, He K H, Wei M Z, Ouyang Y, Chen L 2013 Chin. Phy. B 22 067101
[41] Ran W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phy. B 23 023102
[42] Sun Q, Jena P, Wang Q, Marquez M 2006 J. Am. Chem. Soc. 128 9741
[43] Yoon M, Yang S Y, Hicke C, Wang E, Geohegan D, Zhang Z Y 2008 Phys. Rev. Lett. 100 206806
[44] Cho J H, Park C R 2007 Catal. Today 120 407
[45] An H, Liu C S, Zeng Z, Fan C, Ju X 2011 Appl. Phys. Lett. 98 173101
[46] Li Y C, Zhou G, Li J, Gu B L, Duan W H 2008 J. Phys. Chem. C 112 19268
[47] Frisch M J, et al. 2004 Gaussian 03. Revision E 01. Gaussian Inc, Wallingford CT
[48] Becke A D 1993 J. Chem. Phys. 98 5648
[49] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
[50] Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200
[51] Lu T, Chen F W 2012 J. Comp. Chem. 33 580
[52] Martin J M L, El-Yazal J, Francois J P 1996 Chem. Phys. Lett. 255 7
[53] Jones R O, Seifert G 1997 Phys. Rev. Lett. 79 443
[54] Jensen F, Koch H 1998 J. Chem. Phys. 108 3213
[55] An W, Shao N, Bulusu S, Zeng X C 2008 J. Chem. Phys. 128 084301
[56] Chen Z F, Jiao H J, Bhl M, Hirsch A, Thiel W 2001 Theor. Chem. Acc. 106 352
[57] Paulus B 2003 Phys. Chem. Chem. Phys. 5 3364
[58] Malolepsza E, Witek H A, Irle S 2007 J. Phys. Chem. A111 6649
[59] Peng S, Li X J, Zhang Y, Zhao S 2009 J. Struct. Chem. 50 1046
[60] Moradi M, Peyghan A A, Bagheri Z, Kamfiroozi M 2012 J. Mol. Model 18 3535
-
[1] Lubitz W, Tumas W 2007 Chem. Rev. 107 3900
[2] Crabtree G W, Dresselhaus M S, Buchanan M V 2004 Phys. Today 57 39
[3] Schlapbach L, Zttel A 2001 Natrue 414 353
[4] Chen P, Zhu M 2008 Mater. Today 11 36
[5] Graetz J 2009 Chem. Soc. Rev. 38 73
[6] Jena P 2011 J. Phys. Chem. Lett. 2 206
[7] Liu X Y, He J, Yu J X, Li Z X, Fan Z Q 2014 Chin. Phy. B 23 067303
[8] Bhatia S K, Myers A L 2006 Langmuir 221688
[9] Lochan R C, Gordon M H 2006 Phys. Chem. Chem. Phys. 8 1357
[10] Eberle U, Felderhoff M, Schth F 2009 Angew. Chem. Int. Ed. 48 6608
[11] Park N, Hong S, Kim G, Jhi S H 2007 J. Am. Chem. Soc. 129 8999
[12] U. S. Department of Energy, Hydrogen, fuel cells program: FY 2014 Annual Progress Report
[13] Yang J, Sudik A, Wolvertonb C, Siegel D J 2010 Chem. Soc. Rev. 39 656
[14] Mandal T K, Gregory D H 2009 Annu. Rep. Prog. Chem. Sect. A 105 21
[15] Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 62 137301]
[16] Lu Q L, Huang S G, Li Y D 2013 Acta Phys. Sin. 62 213601 (in Chinese) [卢其亮, 黄守国, 李宜德 2013 62 213601]
[17] Tang C M, Wang C J, Gao F Z, Zhang Y J, Xu Y, Gong J F 2015 Acta Phys. Sin. 64 096103 (in Chinese) [唐春梅, 王成杰, 高凤志, 张轶杰, 徐燕, 巩江峰 2015 64 096103]
[18] Schur D V, Zaginaichenko S Y, Savenko A F, Bogolepov V A, Anikina N S, Zolotarenko A D, Matysina Z A, Veziroglu T N, Skryabina N E 2011 Int. J. Hydrogen Energy 36 1143
[19] Henwood D, Carey J D 2007 Phys. Rev. B 75 245413
[20] Zhou Z, Zhao J J, Chen Z F, Gao X P, Yan T Y, Wen B, Schleyer P V 2006 J. Phys. Chem. B 110 13363
[21] Kim Y H, Zhao Y Y, Wiiliamson A, Heben M J, Zhang S B 2006 Phys. Rev. Lett. 96 016102
[22] Guo Y H, Jiang K, Xu B, Xia Y. D, Yin J, Liu Z G 2012 J. Phys. Chem. C 116 13837
[23] Pupysheva O V, Farajian A A, Yakobson B I 2008 Nano Lett. 8 767
[24] Wu M H, Gao Y, Zhang Z Y, Zeng X C 2012 Nanoscale 4 915
[25] Giri S, Lund F, Núñez A S, Toro-Labbé A 2013 J. Phys. Chem. C 117 5544
[26] Li M, Li Y F, Zhou Z, Shen P W, Chen Z F 2009 Nano Lett. 9 1944
[27] An H, Liu C S, Zeng Z 2011 Phys. Rev. B 83 115456
[28] Tai T B, Nguyen M T 2013 Chem. Commun. 49 913
[29] Durgun E, Jang Y R, Ciraci S 2007 Phys. Rev. B 76 073413
[30] Venkataramanan N S, Belosludov R V, Note R, Sahara R, Mizuseki H, Kawazoe Y 2010 Chem. Phys. 377 54
[31] Lee H, Li J, Zhou G, Duan W, Kim G, lhm J 2008 Phys. Rev. B 77 235101
[32] Chung T C M, Jeong Y, Chen Q, Kleinhammes A, Wu Y 2008 J. Am. Chem. Soc. 130 6668
[33] Chen X W, Yuan F, Gu Q F, Yu X B 2013 J. Mater. Chem. A 1 11705
[34] Yildrim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501
[35] Zhao Y F, Kim Y H, Dillon A C, Heben J M, Zhang S B 2005 Phys. Rev. Lett. 94 155504
[36] Shin W H, Yang S H, Goddard W A, Kang J K 2006 Appl. Phys. Lett. 88 053111
[37] Sun Q, Wang Q, Jena P 2005 J. Am. Chem. Soc. 127 14582
[38] Venkataramanan N S, Khazaei M, Sahara R, Mizuseki H, Kawazoe Y 2009 Chem. Phys. 359 173
[39] Guo J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107
[40] Pan H Z, Wang Y L, He K H, Wei M Z, Ouyang Y, Chen L 2013 Chin. Phy. B 22 067101
[41] Ran W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phy. B 23 023102
[42] Sun Q, Jena P, Wang Q, Marquez M 2006 J. Am. Chem. Soc. 128 9741
[43] Yoon M, Yang S Y, Hicke C, Wang E, Geohegan D, Zhang Z Y 2008 Phys. Rev. Lett. 100 206806
[44] Cho J H, Park C R 2007 Catal. Today 120 407
[45] An H, Liu C S, Zeng Z, Fan C, Ju X 2011 Appl. Phys. Lett. 98 173101
[46] Li Y C, Zhou G, Li J, Gu B L, Duan W H 2008 J. Phys. Chem. C 112 19268
[47] Frisch M J, et al. 2004 Gaussian 03. Revision E 01. Gaussian Inc, Wallingford CT
[48] Becke A D 1993 J. Chem. Phys. 98 5648
[49] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
[50] Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200
[51] Lu T, Chen F W 2012 J. Comp. Chem. 33 580
[52] Martin J M L, El-Yazal J, Francois J P 1996 Chem. Phys. Lett. 255 7
[53] Jones R O, Seifert G 1997 Phys. Rev. Lett. 79 443
[54] Jensen F, Koch H 1998 J. Chem. Phys. 108 3213
[55] An W, Shao N, Bulusu S, Zeng X C 2008 J. Chem. Phys. 128 084301
[56] Chen Z F, Jiao H J, Bhl M, Hirsch A, Thiel W 2001 Theor. Chem. Acc. 106 352
[57] Paulus B 2003 Phys. Chem. Chem. Phys. 5 3364
[58] Malolepsza E, Witek H A, Irle S 2007 J. Phys. Chem. A111 6649
[59] Peng S, Li X J, Zhang Y, Zhao S 2009 J. Struct. Chem. 50 1046
[60] Moradi M, Peyghan A A, Bagheri Z, Kamfiroozi M 2012 J. Mol. Model 18 3535
计量
- 文章访问数: 6480
- PDF下载量: 264
- 被引次数: 0