-
According to the model of ionized impurity scattering, acoustic phonon intravalley scattering and optical phonon intervalley scattering, the dependences of electron mobility of strained Si/(001)Si1-xGex with different germanium constituents on impurity concentration are studied based on Subband occupation by solving Boltzmann equation. The results show that electrons almost totally occupy the Δ2 valley when germanium constituent is up to 0.2, and the mobility with germanium constituent 0.4 is 64% higher than that of the unstrained silicon at low impurity concentration; and vertical channel is not so good for tensile stained Si devices. The model can also be used to calculate the electron mobility of other crystal face with an arbitrarily orientation if the parameters are correctly chosen, so the model offers some useful foundation for strained silicon devices and circuits.
-
Keywords:
- subband occupancy /
- scattering model /
- germanium constituent /
- electron mobility
[1] Hu H Y, Zhang H M, Jia X Z 2007 Chinese Journal of Semiconductors 28 36
[2] Shu Zh Y, Yang H D 2006 Chin. Phys. 15 1374
[3] Song J J, Zhang H M, Xuan R X, Hu H Y, Dai X Y 2009 Acta Phys. Sin. 58 7947 (in Chinese) [宋建军、张鹤鸣、宣荣喜、胡辉勇、戴显英 2009 58 7947]
[4] Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2009 Acta Phys. Sin. 58 4958 (in Chinese) [宋建军、张鹤鸣、胡辉勇、宣荣喜、戴显英 2009 58 4958]
[5] Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2010 Acta Phys. Sin. 59 2064 (in Chinese) [宋建军、张鹤鸣、胡辉勇、戴显英、宣荣喜 2010 59 2064]
[6] Philippe D 1997 J. Appl. Phys. 82 3911
[7] Siddhartha D, Hans K, Vassil P, Stephan E U, Siegfried S 2005 IEEE Transactions on. Electron Devices 52 527
[8] Karlheinz S 1982 Semiconductor Physics: An Introduction p163
[9] Phuong H N, Hofmann K R 2003 J. Appl Phys. 94 375
[10] Ye L X 1992 Monte Carlo Simulation of Small-Size Devices (Beijing: Science Press) p36 9 (in Chinese) [叶良修 1992 小尺寸半导体器件的蒙特卡罗模拟.第一版(北京:科学出版社)第369页]
[11] Tang J Y, Hess K 1983 J. Appl Phys. 54 5145
[12] Vogelsang Th, Hofman K R 1992 IEEE Transactions on. Electron Devices 39 2641
[13] Soline R Nicolas C, Frederic A, Guy F 2003 J. Appl. Phys. 94 5088
[14] Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physics (Beijing: Defense Industry Press) p98 (in Chinese) [刘恩科、 朱秉升、 罗晋生 1994 半导体物理学(北京:国防工业出版社)第98页]
[15] Karlowatz G, Ungersboeck E, Wessner W, Kosina H 2006 IEEE 63
-
[1] Hu H Y, Zhang H M, Jia X Z 2007 Chinese Journal of Semiconductors 28 36
[2] Shu Zh Y, Yang H D 2006 Chin. Phys. 15 1374
[3] Song J J, Zhang H M, Xuan R X, Hu H Y, Dai X Y 2009 Acta Phys. Sin. 58 7947 (in Chinese) [宋建军、张鹤鸣、宣荣喜、胡辉勇、戴显英 2009 58 7947]
[4] Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2009 Acta Phys. Sin. 58 4958 (in Chinese) [宋建军、张鹤鸣、胡辉勇、宣荣喜、戴显英 2009 58 4958]
[5] Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2010 Acta Phys. Sin. 59 2064 (in Chinese) [宋建军、张鹤鸣、胡辉勇、戴显英、宣荣喜 2010 59 2064]
[6] Philippe D 1997 J. Appl. Phys. 82 3911
[7] Siddhartha D, Hans K, Vassil P, Stephan E U, Siegfried S 2005 IEEE Transactions on. Electron Devices 52 527
[8] Karlheinz S 1982 Semiconductor Physics: An Introduction p163
[9] Phuong H N, Hofmann K R 2003 J. Appl Phys. 94 375
[10] Ye L X 1992 Monte Carlo Simulation of Small-Size Devices (Beijing: Science Press) p36 9 (in Chinese) [叶良修 1992 小尺寸半导体器件的蒙特卡罗模拟.第一版(北京:科学出版社)第369页]
[11] Tang J Y, Hess K 1983 J. Appl Phys. 54 5145
[12] Vogelsang Th, Hofman K R 1992 IEEE Transactions on. Electron Devices 39 2641
[13] Soline R Nicolas C, Frederic A, Guy F 2003 J. Appl. Phys. 94 5088
[14] Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physics (Beijing: Defense Industry Press) p98 (in Chinese) [刘恩科、 朱秉升、 罗晋生 1994 半导体物理学(北京:国防工业出版社)第98页]
[15] Karlowatz G, Ungersboeck E, Wessner W, Kosina H 2006 IEEE 63
Catalog
Metrics
- Abstract views: 12689
- PDF Downloads: 744
- Cited By: 0