-
Heterogeneous nucleation plays an important part in the solidification process. In order to describe the effects of the substrate surface on the heterogeneous nucleation, an idealized planar interface between the nucleus and the substrate is assumed in the consideration of the classical nucleation theory, but this may lead to the deviation of the experimental results from the theoretical predictions, since there is no idealized planar surface on any actual substrate. The heterogeneous nucleation procedure of solid phase on rough substrate surface is investigated, and the effect of the roughness factor of the substrate on nucleation energy is analyzed based on the Wenzel wetting model. The results show that when the intrinsic contact angle between the substrate and the nucleus in the base phase is less than 90°, higher roughness of the substrate surface makes it easier to induce heterogeneous nucleation; when intrinsic contact angle is greater than 90°, higher roughness would restrict the nucleation on the substrate surface. Meanwhile, attaching and wetting drift embryos on the substrate play an important part in the formation of effective nucleus on the substrate, while the change of interfacial free energy in the wetting process of the embryos on the rough substrate surface has an important effect on heterogeneous nucleation behaviors.
-
Keywords:
- heterogeneous nucleation /
- rough surface /
- Wenzel model /
- wetting
[1] Min N B 1982 Physical Fundamental of Crystal Growth (Shanghai: Shanghai Science and Technology Press) pp339—374 (in Chinese) [闵乃本 1982 晶体生长的物理学基础 (上海:上海科学技术出版社) 第339—374页]
[2] Min J C 2002 Acta Phys. Sin. 51 2730 (in Chinese) [闵敬春 2002 51 2730]
[3] Qi Y S, Klausner J F, Ren W M 2004 Int. J. Heat Mass Transfer 47 3097
[4] Christian J W 2002 The Theory of Transformations in Metals and Alloys (Oxford: Pergamon Press) pp422—479
[5] Zhou Y H 2007 Collection of Academician Zhou Yao-He (Beijing: China Machine Press) p3 (in Chinese) [周尧和 2007 周尧和院士文集(北京:机械工业出版社)第3页]
[6] Fisher J C,Hollomon J H, Turnbull D 1948 J. Appl. Phys. 19 775
[7] Turnbull D 1950 J. Appl. Phys. 21 1022
[8] Ma Q 2007 Acta Meter. 55 943
[9] Quested T E, Greer A L 2005 Acta Meter. 53 2683
[10] Fletcher N H 1958 J. Appl. Phys. 29 572
[11] Hu H Q 2007 The Principle of Solidification in Metals (Beijing: China Machine Press) p92 (in Chinese) [胡汉起 2007 金属凝固原理(北京:机械工业出版社)第92页]
[12] Turnbull D 1950 J. Chem. Phys. 18 198
[13] Wang W L, Lin X, Huang W D 2007 Foundry Technol. 28 1036 (in Chinese) [王文礼、林 鑫、黄卫东 2007 铸造技术 28 1036]
[14] Zhang H W, Li Y X 2007 Acta Phys. Sin. 56 4864 (in Chinese) [张华伟、李言祥 2008 56 4864]
[15] Wenzel R N 1936 Ind. Eng. Chem. 28 988
-
[1] Min N B 1982 Physical Fundamental of Crystal Growth (Shanghai: Shanghai Science and Technology Press) pp339—374 (in Chinese) [闵乃本 1982 晶体生长的物理学基础 (上海:上海科学技术出版社) 第339—374页]
[2] Min J C 2002 Acta Phys. Sin. 51 2730 (in Chinese) [闵敬春 2002 51 2730]
[3] Qi Y S, Klausner J F, Ren W M 2004 Int. J. Heat Mass Transfer 47 3097
[4] Christian J W 2002 The Theory of Transformations in Metals and Alloys (Oxford: Pergamon Press) pp422—479
[5] Zhou Y H 2007 Collection of Academician Zhou Yao-He (Beijing: China Machine Press) p3 (in Chinese) [周尧和 2007 周尧和院士文集(北京:机械工业出版社)第3页]
[6] Fisher J C,Hollomon J H, Turnbull D 1948 J. Appl. Phys. 19 775
[7] Turnbull D 1950 J. Appl. Phys. 21 1022
[8] Ma Q 2007 Acta Meter. 55 943
[9] Quested T E, Greer A L 2005 Acta Meter. 53 2683
[10] Fletcher N H 1958 J. Appl. Phys. 29 572
[11] Hu H Q 2007 The Principle of Solidification in Metals (Beijing: China Machine Press) p92 (in Chinese) [胡汉起 2007 金属凝固原理(北京:机械工业出版社)第92页]
[12] Turnbull D 1950 J. Chem. Phys. 18 198
[13] Wang W L, Lin X, Huang W D 2007 Foundry Technol. 28 1036 (in Chinese) [王文礼、林 鑫、黄卫东 2007 铸造技术 28 1036]
[14] Zhang H W, Li Y X 2007 Acta Phys. Sin. 56 4864 (in Chinese) [张华伟、李言祥 2008 56 4864]
[15] Wenzel R N 1936 Ind. Eng. Chem. 28 988
Catalog
Metrics
- Abstract views: 12182
- PDF Downloads: 924
- Cited By: 0