搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面形核时间对GaN薄膜晶体质量的影响

郭瑞花 卢太平 贾志刚 尚林 张华 王蓉 翟光美 许并社

引用本文:
Citation:

界面形核时间对GaN薄膜晶体质量的影响

郭瑞花, 卢太平, 贾志刚, 尚林, 张华, 王蓉, 翟光美, 许并社

Effect of interface nucleation time of the GaN nucleation layer on the crystal quality of GaN film

Guo Rui-Hua, Lu Tai-Ping, Jia Zhi-Gang, Shang Lin, Zhang Hua, Wang Rong, Zhai Guang-Mei, Xu Bing-She
PDF
导出引用
  • 利用金属有机化学气相沉积技术系统研究了界面形核时间对c面蓝宝石衬底上外延生长GaN薄膜晶体质量的影响机理. 用原子力显微镜、扫描电子显微镜、高分辨X射线衍射仪以及光致发光光谱仪表征材料的晶体质量以及光学性质. 随着形核时间的延长, 退火后形成的形核岛密度减小、尺寸增大、均匀性变差, 使得形核岛合并过程中产生的界面数量先减小后增大, 导致GaN外延层的螺位错和刃位错密度先减小后增大, 这与室温光致发光光谱中得到的带边发光峰与黄带发光峰的比值先增大后降低一致. 研究结果表明, 外延生长过程中, 界面形核时间会对GaN薄膜中的位错演变施加巨大影响, 从而导致GaN外延层的晶体质量以及光学性质的差异.
    In this paper, the influences of the growth time of low-temperature (LT) GaN nucleation layer on the crystal quality and optical properties of GaN film are investigated. It is found that the optimal LT nucleation layer growth time can effectively reduce the crystal defects and is favorable to forming the annihilation of dislocations. GaN films are grown on c-plane sapphire substrates by metal-organic chemical vapor deposition. Crystal quality and optical properties are characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution X-ray diffraction (HRXRD), and photoluminescence spectra, respectively. In the AFM images, the island density decreases as growth time increases, while the size of island becomes larger and the uniformity of island size deteriorates as growth time increases, leading to the phenomenon that the number of interfaces formed during the nucleation island coalescence, first decrease and then increase as detected by SEM, which also induces the screw dislocation density and edge dislocation density to first decrease and then increase as measured by HRXRD. This first-decrease-and-then-increase variation trend is consistent with the first-increase-and-then-decrease variation trend of the ratio of the band edge emission peak intensity to the yellow luminescence peak intensity tested by photoluminescence, which is confirmed by HRXRD. It is shown that GaN islands with different sizes and densities could lead to different mechanisms of dislocation evolution, thereby forming GaN epitaxial layers with different dislocation densities and optical properties. Through controlling the nucleation time, GaN films with the smallest dislocation density could be obtained.
    • 基金项目: 国家自然科学基金(批准号:61475110,61404089,21471111)、江苏省太阳能电池材料与技术重点实验室开放研究基金,常州大学(批准号:201205)、山西省科技创新重点团队(批准号:2012041011)和山西省自然科学基金(批准号:2014021019-1)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475110, 61404089, 21471111), the Open Research Fund of Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou University, China (Grant No. 201205), the Key Science and Technology Innovative Research Team of Shanxi Province, China (Grant No. 2012041011), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014021019-1).
    [1]

    Jia H Q, Guo L W, Wang W X, Chen H 2009 Adv. Mater. 21 4641

    [2]

    Xu B S, Zhai L Y, Liang J, Ma S F, Jia H S, Liu X G 2006 J. Cryst. Growth 291 34

    [3]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 63 068103]

    [4]

    Bao H Q, Li H, Wang G, Song B, Wang W J, Chen X L 2008 J. Cryst. Growth 310 2955

    [5]

    Nakamura S 1991 Jpn. J. Appl. Phys. 30 1705

    [6]

    Zhang J F, Nie Y H, Zhou Y B, Tian K, Ha W, Xiao M, Zhang J C, Hao Y 2014 Chin. Phys. B 23 068102

    [7]

    Lu T P, Li S T, Liu C, Zhang K, Xu Y Q, Tong J H, Wu L J, Wang H L, Yang X D, Yin Y, Xiao G W, Zhou Y G 2012 Appl. Phys. Lett. 100 141106

    [8]

    Xu B S, Yang D, Wang F, Liang J, Ma S F, Liu X G 2006 Appl. Phys. Lett. 89 074106

    [9]

    Zhong C T, Yu T J, Yan J, Chen Z Z, Zhang G Y 2013 Chin. Phys. B 22 117804

    [10]

    Wang T, Shirahama T, Sun H B, Wang H X, Bai J, Sakai S, Misawa H H 2000 Appl. Phys. Lett. 76 2220

    [11]

    Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L, Yang X D 2011 Chin. Phys. B 20 098503

    [12]

    Kim Y, Subramanya S G, Siegle H, Krug R J, Perlin P, Weber E R 2000 J. Appl. Phys. 88 6032

    [13]

    Wuu W S, Horng R H, Tseng W H, Lin W T, Kung C Y 2000 J. Cryst. Growth 220 235

    [14]

    Li S T, Jiang F Y, Fan G H, Fang W Q, Wang L 2007 Physica B 391 169

    [15]

    Koleske D D, Coltrin M E, Cross K C, Mitchell C C, Allerman A A 2004 J. Cryst. Growth 273 86

    [16]

    Koleske D D, Fischer A J, Allerman A A, Mitchell C C, Cross K C, Kurtz S R, Figiel J J, Fullmer K W, Breiland W G 2002 Appl. Phys. Lett. 81 1940

    [17]

    Chen J, Zhang S M, Zhang B S, Zhu J J, Shen X M, Feng G, Liu J P, Wang Y T, Yang H, Zheng W C 2003 J. Cryst. Growth 256 252

    [18]

    Li X B, Wu J J, Liu N L, Han T, Kang X N, Yu T J, Zhang G Y 2014 Mater. Lett. 132 94

    [19]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [20]

    Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H, Gu W P 2009 J. Cryst. Growth 311 3622

    [21]

    Zhang Y, Xie Z L, Wang J, Tao T, Zhang R, Liu B, Chen P, Han P, Shi Y, Zheng Y L 2013 Acta Phys. Sin. 62 056101 (in Chinese) [张韵, 谢自力, 王健, 陶涛, 张荣, 刘斌, 陈鹏, 韩平, 施毅, 郑有炓 2013 62 056101]

    [22]

    Zielińska-Rohozińska E, Regulska M, Harutyunyan V S, Pakula K, Borowski J 2002 Mater. Sci. Engin. B 91-92 441

    [23]

    Wang J X, Wang L S, Yang S Y, Li H J, Zhao G J, Zhang H, Wei H Y, Jiao C M, Zhu Q S, Wang Z G 2014 Chin. Phys. B 23 026801

    [24]

    Xu P Q, Jiang Y, Ma Z G, Deng Z, Lu T P, Du C H, Fang Y T, Zuo P, Chen H 2013 Chin. Phys. Lett. 30 028101

    [25]

    Dunn C G, Koch E F 1957 Acta Metall. 5 548

    [26]

    Taniyasu Y, Kasu M, Makimoto T 2007 J. Cryst. Growth 298 310

    [27]

    Metzger T, Höpler R, Born E, Ambacher O, Stutzmann M, Stömmer R, Schuster M, Göbel H, Christiansen S, Albrecht M, Strunk H P 1998 Philos. Mag. A 77 1013

    [28]

    Chierchia R, Böttcher T, Heinke H, Einfeldt S, Figge S, Hommel D 2003 J. Appl. Phys. 93 8918

    [29]

    Zheng X H, Chen H, Yan Z B, Han Y J, Yu H B, Li D S, Huang Q, Zhou J M 2003 J. Cryst. Growth 255 63

    [30]

    Arslan E, Ozturk M K, Duygulu Ö, Kaya A A, Ozcelik S, Ozbay E 2009 Appl. Phys. A 94 73

    [31]

    Saron K M A, Hashim M R, Allam N K 2013 J. Appl. Phys. 113 124304

    [32]

    Zhang L L, Liu Z H, Xiu X Q, Zhang R, Xie Z L 2013 Acta Phys. Sin. 62 208101 (in Chinese) [张李骊, 刘战辉, 修向前, 张荣, 谢自力 2013 62 208101]

    [33]

    Cao R T, Xu S R, Zhang J C, Zhao Y, Xue J S, Ha W, Zhang S, Cui P S, Wen H J, Chen X 2014 Chin. Phys. B 23 047804

    [34]

    Zheng Z Y, Chen Z M, Wu H L, Chen Y D, Huang S J, Fan B F, Xian Y L, Wu Z S, Wang G, Jiang H 2014 J. Cryst. Growth 387 52

    [35]

    Fang Z L, Kang J Y, Shen W Z 2008 J. Phys. Chem. C 112 17652

    [36]

    Xu S R, Hao Y, Zhang J C, Jiang T, Yang L N, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654

    [37]

    Lu T P, Ma Z G, Du C H, Fang Y T, Wu H Y, Jiang Y, Wang L, Dai L G, Jia H Q, Liu W M, Chen H 2014 Sci. Rep. 4 6131

    [38]

    Benamara M, Liliental-Weber Z, Kellermann S, Swider W, Washburn J, Mazur J, Bourret-Courchesne E D 2000 J. Cryst. Growth 218 447

    [39]

    Masataka I, Naoki F, Narihito O, Krishnan B, Motoaki I, Satoshi K, Hiroshi A, Isamu A, Tadashi N, Takashi T, Akira B 2007 J. Cryst. Growth 300 136

    [40]

    Zhao L B, Yu T J, Wu J J, Dai T, Yang Z J, Zhang G Y 2010 Appl. Surf. Sci. 256 2236

  • [1]

    Jia H Q, Guo L W, Wang W X, Chen H 2009 Adv. Mater. 21 4641

    [2]

    Xu B S, Zhai L Y, Liang J, Ma S F, Jia H S, Liu X G 2006 J. Cryst. Growth 291 34

    [3]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 63 068103]

    [4]

    Bao H Q, Li H, Wang G, Song B, Wang W J, Chen X L 2008 J. Cryst. Growth 310 2955

    [5]

    Nakamura S 1991 Jpn. J. Appl. Phys. 30 1705

    [6]

    Zhang J F, Nie Y H, Zhou Y B, Tian K, Ha W, Xiao M, Zhang J C, Hao Y 2014 Chin. Phys. B 23 068102

    [7]

    Lu T P, Li S T, Liu C, Zhang K, Xu Y Q, Tong J H, Wu L J, Wang H L, Yang X D, Yin Y, Xiao G W, Zhou Y G 2012 Appl. Phys. Lett. 100 141106

    [8]

    Xu B S, Yang D, Wang F, Liang J, Ma S F, Liu X G 2006 Appl. Phys. Lett. 89 074106

    [9]

    Zhong C T, Yu T J, Yan J, Chen Z Z, Zhang G Y 2013 Chin. Phys. B 22 117804

    [10]

    Wang T, Shirahama T, Sun H B, Wang H X, Bai J, Sakai S, Misawa H H 2000 Appl. Phys. Lett. 76 2220

    [11]

    Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L, Yang X D 2011 Chin. Phys. B 20 098503

    [12]

    Kim Y, Subramanya S G, Siegle H, Krug R J, Perlin P, Weber E R 2000 J. Appl. Phys. 88 6032

    [13]

    Wuu W S, Horng R H, Tseng W H, Lin W T, Kung C Y 2000 J. Cryst. Growth 220 235

    [14]

    Li S T, Jiang F Y, Fan G H, Fang W Q, Wang L 2007 Physica B 391 169

    [15]

    Koleske D D, Coltrin M E, Cross K C, Mitchell C C, Allerman A A 2004 J. Cryst. Growth 273 86

    [16]

    Koleske D D, Fischer A J, Allerman A A, Mitchell C C, Cross K C, Kurtz S R, Figiel J J, Fullmer K W, Breiland W G 2002 Appl. Phys. Lett. 81 1940

    [17]

    Chen J, Zhang S M, Zhang B S, Zhu J J, Shen X M, Feng G, Liu J P, Wang Y T, Yang H, Zheng W C 2003 J. Cryst. Growth 256 252

    [18]

    Li X B, Wu J J, Liu N L, Han T, Kang X N, Yu T J, Zhang G Y 2014 Mater. Lett. 132 94

    [19]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [20]

    Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H, Gu W P 2009 J. Cryst. Growth 311 3622

    [21]

    Zhang Y, Xie Z L, Wang J, Tao T, Zhang R, Liu B, Chen P, Han P, Shi Y, Zheng Y L 2013 Acta Phys. Sin. 62 056101 (in Chinese) [张韵, 谢自力, 王健, 陶涛, 张荣, 刘斌, 陈鹏, 韩平, 施毅, 郑有炓 2013 62 056101]

    [22]

    Zielińska-Rohozińska E, Regulska M, Harutyunyan V S, Pakula K, Borowski J 2002 Mater. Sci. Engin. B 91-92 441

    [23]

    Wang J X, Wang L S, Yang S Y, Li H J, Zhao G J, Zhang H, Wei H Y, Jiao C M, Zhu Q S, Wang Z G 2014 Chin. Phys. B 23 026801

    [24]

    Xu P Q, Jiang Y, Ma Z G, Deng Z, Lu T P, Du C H, Fang Y T, Zuo P, Chen H 2013 Chin. Phys. Lett. 30 028101

    [25]

    Dunn C G, Koch E F 1957 Acta Metall. 5 548

    [26]

    Taniyasu Y, Kasu M, Makimoto T 2007 J. Cryst. Growth 298 310

    [27]

    Metzger T, Höpler R, Born E, Ambacher O, Stutzmann M, Stömmer R, Schuster M, Göbel H, Christiansen S, Albrecht M, Strunk H P 1998 Philos. Mag. A 77 1013

    [28]

    Chierchia R, Böttcher T, Heinke H, Einfeldt S, Figge S, Hommel D 2003 J. Appl. Phys. 93 8918

    [29]

    Zheng X H, Chen H, Yan Z B, Han Y J, Yu H B, Li D S, Huang Q, Zhou J M 2003 J. Cryst. Growth 255 63

    [30]

    Arslan E, Ozturk M K, Duygulu Ö, Kaya A A, Ozcelik S, Ozbay E 2009 Appl. Phys. A 94 73

    [31]

    Saron K M A, Hashim M R, Allam N K 2013 J. Appl. Phys. 113 124304

    [32]

    Zhang L L, Liu Z H, Xiu X Q, Zhang R, Xie Z L 2013 Acta Phys. Sin. 62 208101 (in Chinese) [张李骊, 刘战辉, 修向前, 张荣, 谢自力 2013 62 208101]

    [33]

    Cao R T, Xu S R, Zhang J C, Zhao Y, Xue J S, Ha W, Zhang S, Cui P S, Wen H J, Chen X 2014 Chin. Phys. B 23 047804

    [34]

    Zheng Z Y, Chen Z M, Wu H L, Chen Y D, Huang S J, Fan B F, Xian Y L, Wu Z S, Wang G, Jiang H 2014 J. Cryst. Growth 387 52

    [35]

    Fang Z L, Kang J Y, Shen W Z 2008 J. Phys. Chem. C 112 17652

    [36]

    Xu S R, Hao Y, Zhang J C, Jiang T, Yang L N, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654

    [37]

    Lu T P, Ma Z G, Du C H, Fang Y T, Wu H Y, Jiang Y, Wang L, Dai L G, Jia H Q, Liu W M, Chen H 2014 Sci. Rep. 4 6131

    [38]

    Benamara M, Liliental-Weber Z, Kellermann S, Swider W, Washburn J, Mazur J, Bourret-Courchesne E D 2000 J. Cryst. Growth 218 447

    [39]

    Masataka I, Naoki F, Narihito O, Krishnan B, Motoaki I, Satoshi K, Hiroshi A, Isamu A, Tadashi N, Takashi T, Akira B 2007 J. Cryst. Growth 300 136

    [40]

    Zhao L B, Yu T J, Wu J J, Dai T, Yang Z J, Zhang G Y 2010 Appl. Surf. Sci. 256 2236

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化.  , 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响.  , 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [3] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究.  , 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [4] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究.  , 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [5] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟.  , 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [6] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理.  , 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [7] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟.  , 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [8] 何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平. 基于三轴X射线衍射方法的n-GaN位错密度的测试条件分析.  , 2017, 66(21): 216102. doi: 10.7498/aps.66.216102
    [9] 何菊生, 张萌, 潘华清, 邹继军, 齐维靖, 李平. 基于变温霍尔效应方法的一类n-GaN位错密度的测量.  , 2017, 66(6): 067201. doi: 10.7498/aps.66.067201
    [10] 汤文辉, 刘邦武, 张柏诚, 李敏, 夏洋. 等离子增强原子层沉积低温生长GaN薄膜.  , 2017, 66(9): 098101. doi: 10.7498/aps.66.098101
    [11] 杜浩, 倪玉山. 钽、铁、钨三种体心立方金属裂纹的多尺度模拟及韧脆性分析.  , 2016, 65(19): 196201. doi: 10.7498/aps.65.196201
    [12] 何菊生, 张萌, 潘华清, 齐维靖, 李平. 一种测量纤锌矿n-GaN位错密度的新方法.  , 2016, 65(16): 167201. doi: 10.7498/aps.65.167201
    [13] 第伍旻杰, 胡晓棉. 高应变率压缩下纳米孔洞对金属铝塑性变形的影响研究.  , 2015, 64(17): 170201. doi: 10.7498/aps.64.170201
    [14] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高. 高温应变下的晶界湮没机理的晶体相场法研究.  , 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [15] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究.  , 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [16] 李联和, 刘官厅. 一维六方准晶中螺形位错与楔形裂纹的相互作用.  , 2012, 61(8): 086103. doi: 10.7498/aps.61.086103
    [17] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法.  , 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [18] 方步青, 卢果, 张广财, 许爱国, 李英骏. 铜晶体中类层错四面体的结构及其演化.  , 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
    [19] 席光义, 郝智彪, 汪 莱, 李洪涛, 江 洋, 赵 维, 任 凡, 韩彦军, 孙长征, 罗 毅. 非故意掺杂GaN薄膜方块电阻与载气中N2比例关系研究.  , 2008, 57(11): 7233-7237. doi: 10.7498/aps.57.7233
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究.  , 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  6296
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-29
  • 修回日期:  2015-01-28
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map