-
The wetting process and the wetting state transition stages are studied on hydrophilic rough surfaces covered with microscale pillar arrays of different geometrical morphologies and distributions. The effects of geometrical morphology, distribution, parameters, hydrophilicity, and contact angle hysteresis of pillar arrays on wetting state transition are analyzed by an energy method. The results indicate that on the hydrophilic rough surface covered with hexagonal arrays of square pillars, the water droplet tends to stay in a stable Cassie state, or the wetting state transits only from a Cassie state to an intermediate state. Moreover, smaller pillar interval, larger square pillar width or diameter of cylinder, higher pillar height, strong hydrophilicity are beneficial to the stability of Cassie state, therefore, the wetting state could be prevented from transforming to pseudo-Wenzel state or Wenzel state. However, smaller area fraction of solid-liquid interface under the water drop and weaker hydrophilicity is beneficial to increasing the apparent contact angle. Therefore, the stability of wetting state and the large apparent contact angle should be considered in hydrophilic surface design. The contact angle hysteresis gives rise to an opposite effect on wetting state stability and the hydrophobicity or superhydrophobicity of rough solid surface. The results provide a theoretical foundation for designing the substrates covered with hydrophilic rough structures, on which the water droplet will obtain a stable Cassie state.
-
Keywords:
- hydrophilic surface /
- microscale rough structure /
- surface energy /
- wetting state transition
[1] Koch K, Barthlott W 2009 Phil. Trans. R. Soc. A 367 1487
[2] Bhushan B 2009 Phil. Trans. R. Soc. A 367 1445
[3] Frstner R, Barthlott W 2005 Langmuir 21 956
[4] Bhushan B, Nosonovsky M, Jung Y C 2007 J. R. Soc. Interface 4 643
[5] Song B W, Guo Y H, Luo Z Z, Xu X H, Wang Y 2013 Acta Phys. Sin. 62 154701 (in Chinese) [宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰 2013 62 154701]
[6] Liu S S, Zhang C H, Liu J M 2010 Acta Phys. Sin. 59 6902 (in Chinese) [刘思思, 张朝辉, 刘俊铭 2010 59 6902]
[7] He Y, Jiang C Y, Yin H X, Chen J, Yuan W Z 2011 J. Colloid Interface Sci. 364 219
[8] Lakshmi R V, Bharathidasan T, Bharathibai J B 2011 Appl. Surf. Sci. 257 10421
[9] Ran C B, Ding G Q, Liu W C, Deng Y, Hou W T 2008 Langmuir 24 9952
[10] Wenzel N R 1936 Ind. Eng. Chem. 28 988
[11] Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546
[12] Ishino C, Okumura K 2006 Europhys. Lett. 76 464
[13] Wang B, Nian J Y, Tie L, Zhang Y B, Guo Z G 2013 Acta Phys. Sin. 62 146801 (in Chinese) [王奔, 念敬妍, 铁璐, 张亚斌, 郭志光 2013 62 146801]
[14] Patankar N A 2010 Langmuir 26 8941
[15] Patankar N A 2003 Langmuir 19 1249
[16] Extrand C W 2002 Langmuir 18 7991
[17] Lafuma A, Quere D 2003 Nat. Mater. 2 457
[18] Bormashenko E, Pogerb R, Whyman G, Mordehai E 2007 Langmuir 23 6501
[19] He B, Patankar N A, Lee J 2003 Langmuir 19 4999
[20] Bico J, Marzolin C, Quere D 1999 Europhys. Lett. 47 220
[21] Nosonovsky M, Bhushan B 2008 Langmuir 24 1525
[22] Moulinet S, Bartolo D 2007 Eur. Phys. J. E 24 251
[23] Ishino C, Okumura K 2008 Eur. Phys. J. E 25 415
[24] Whyman G, Bormashenko E 2011 Langmuir 27 8171
[25] Im M, Im H, Lee J H, Yoon J B, Choi Y K 2010 Langmuir 26 17389
[26] Bormashenko E, Bormashenko Y, Whyman G, Pogreb R, Stanevsky O 2006 J. Colloid Interface Sci. 302 308
[27] Liu H H, Zhang H Y, Li W 2011 Langmuir 27 6260
[28] Extrand C W 2002 Langmuir 18 7991
[29] Wang J D, Chen D R 2008 Langmuir 24 10174
[30] Jung Y C, Bhushan B 2007 Scripta Mater. 57 1057
[31] Jurgen J, Holger G, Rachel Y R 2004 Langmuir 20 10015
[32] Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K 2002 Langmuir 18 5818
-
[1] Koch K, Barthlott W 2009 Phil. Trans. R. Soc. A 367 1487
[2] Bhushan B 2009 Phil. Trans. R. Soc. A 367 1445
[3] Frstner R, Barthlott W 2005 Langmuir 21 956
[4] Bhushan B, Nosonovsky M, Jung Y C 2007 J. R. Soc. Interface 4 643
[5] Song B W, Guo Y H, Luo Z Z, Xu X H, Wang Y 2013 Acta Phys. Sin. 62 154701 (in Chinese) [宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰 2013 62 154701]
[6] Liu S S, Zhang C H, Liu J M 2010 Acta Phys. Sin. 59 6902 (in Chinese) [刘思思, 张朝辉, 刘俊铭 2010 59 6902]
[7] He Y, Jiang C Y, Yin H X, Chen J, Yuan W Z 2011 J. Colloid Interface Sci. 364 219
[8] Lakshmi R V, Bharathidasan T, Bharathibai J B 2011 Appl. Surf. Sci. 257 10421
[9] Ran C B, Ding G Q, Liu W C, Deng Y, Hou W T 2008 Langmuir 24 9952
[10] Wenzel N R 1936 Ind. Eng. Chem. 28 988
[11] Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546
[12] Ishino C, Okumura K 2006 Europhys. Lett. 76 464
[13] Wang B, Nian J Y, Tie L, Zhang Y B, Guo Z G 2013 Acta Phys. Sin. 62 146801 (in Chinese) [王奔, 念敬妍, 铁璐, 张亚斌, 郭志光 2013 62 146801]
[14] Patankar N A 2010 Langmuir 26 8941
[15] Patankar N A 2003 Langmuir 19 1249
[16] Extrand C W 2002 Langmuir 18 7991
[17] Lafuma A, Quere D 2003 Nat. Mater. 2 457
[18] Bormashenko E, Pogerb R, Whyman G, Mordehai E 2007 Langmuir 23 6501
[19] He B, Patankar N A, Lee J 2003 Langmuir 19 4999
[20] Bico J, Marzolin C, Quere D 1999 Europhys. Lett. 47 220
[21] Nosonovsky M, Bhushan B 2008 Langmuir 24 1525
[22] Moulinet S, Bartolo D 2007 Eur. Phys. J. E 24 251
[23] Ishino C, Okumura K 2008 Eur. Phys. J. E 25 415
[24] Whyman G, Bormashenko E 2011 Langmuir 27 8171
[25] Im M, Im H, Lee J H, Yoon J B, Choi Y K 2010 Langmuir 26 17389
[26] Bormashenko E, Bormashenko Y, Whyman G, Pogreb R, Stanevsky O 2006 J. Colloid Interface Sci. 302 308
[27] Liu H H, Zhang H Y, Li W 2011 Langmuir 27 6260
[28] Extrand C W 2002 Langmuir 18 7991
[29] Wang J D, Chen D R 2008 Langmuir 24 10174
[30] Jung Y C, Bhushan B 2007 Scripta Mater. 57 1057
[31] Jurgen J, Holger G, Rachel Y R 2004 Langmuir 20 10015
[32] Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K 2002 Langmuir 18 5818
Catalog
Metrics
- Abstract views: 7070
- PDF Downloads: 568
- Cited By: 0