-
Inspired by the idea of the stero-coupling, we propose a new sandwich-like photonic crystal microcavity which is composed of double layer photonic crystal slabs H1 (DLPCS-H1) cavity with an air layer in between. We calculate the electromagnetic field distribution and the quality factor of the dipole mode by the three-dimensional finite-difference time-domain method and the Padé approximation method. Through carefully analyzing the effect of the air layer height on the quality factor of the dipole mode, we obtain an optimized DLPCS-H1 cavity in which the height of intermediate air layer is about 0.5a (a is the lattice constant, a=420 nm). In this cavity, the quality factor of the dipole mode is 4 times as large as that of the conventional single layer photonic crystal slab H1 cavity. Furthermore, we study the three-layer photonic crystal slabs H1 cavity, and the quality factor of its dipole mode is increased over 7 times.
-
Keywords:
- double layers photonic crystal slabs cavity /
- dipole mode /
- quality factor /
- Padé approximation
[1] John S 1987 Phys. Rev. Lett. 58 2486
[2] Yablonvitch E 1987 Phys. Rev. Lett. 58 2059
[3] Painter O, Lee R K, Scherer A, Yariv A, O’OBrien J D, Dapkus P D, Kim I 1999 Science 284 1819
[4] Noda S, Chutinan A, Imada M 2000 Nature 407 608
[5] Shinya A, Mitsugi S, Kuramochi E, Notomi M 2006 Opt. Express 14 12394
[6] Chutinan A, Noda S 2000 Phys. Rev. B 62 4488
[7] Han S Z, Tian J, Feng S, Ren C, Li Z Y, Cheng B Y, Zhang D Z 2005 Acta Phys. Sin. 54 5659 (in Chinese) [韩守振、田 洁、冯 帅、任 承、李志远、程丙英、张道中 2005 54 5659]
[8] Ryu H Y, Park H G, Lee Y H 2002 IEEE J. Sel. Top. Quantum Electron. 8 4
[9] Chen W, Xing M X, Ren G, Wang K, Du X Y, Zhang Y J, Zheng W H 2009 Acta Phys. Sin. 58 3955 (in Chinese) [陈 微、邢名欣、任 刚、王 科、杜晓宇、张冶金、郑婉华 2009 物 理学报 58 3955 ] 〖10] Akahane Y, Asano T, Song B S, Noda S 2003 Nature 425 944
[10] Akahane Y, Asano T, Song B S, Noda S 2005 Opt. Express 13 1202
[11] Dey S, Mittra R 1998 IEEE Microwave Guide Wave Lett. 8 415
[12] Huang Y Z, Chen Q, Guo W H, Yu L J 2005 J. Semicond. 26 281
[13] Guo W H, Li W J, Huang Y Z 2001 IEEE Microwave Wireless Compon. Lett. 11 223
[14] Lalanne P, Mias S, Hugonin J P 2004 Opt. Express 12 458
[15] Jugessur A S, Pottier P, De La Rue R M 2003 Electron. Lett. 39 367
-
[1] John S 1987 Phys. Rev. Lett. 58 2486
[2] Yablonvitch E 1987 Phys. Rev. Lett. 58 2059
[3] Painter O, Lee R K, Scherer A, Yariv A, O’OBrien J D, Dapkus P D, Kim I 1999 Science 284 1819
[4] Noda S, Chutinan A, Imada M 2000 Nature 407 608
[5] Shinya A, Mitsugi S, Kuramochi E, Notomi M 2006 Opt. Express 14 12394
[6] Chutinan A, Noda S 2000 Phys. Rev. B 62 4488
[7] Han S Z, Tian J, Feng S, Ren C, Li Z Y, Cheng B Y, Zhang D Z 2005 Acta Phys. Sin. 54 5659 (in Chinese) [韩守振、田 洁、冯 帅、任 承、李志远、程丙英、张道中 2005 54 5659]
[8] Ryu H Y, Park H G, Lee Y H 2002 IEEE J. Sel. Top. Quantum Electron. 8 4
[9] Chen W, Xing M X, Ren G, Wang K, Du X Y, Zhang Y J, Zheng W H 2009 Acta Phys. Sin. 58 3955 (in Chinese) [陈 微、邢名欣、任 刚、王 科、杜晓宇、张冶金、郑婉华 2009 物 理学报 58 3955 ] 〖10] Akahane Y, Asano T, Song B S, Noda S 2003 Nature 425 944
[10] Akahane Y, Asano T, Song B S, Noda S 2005 Opt. Express 13 1202
[11] Dey S, Mittra R 1998 IEEE Microwave Guide Wave Lett. 8 415
[12] Huang Y Z, Chen Q, Guo W H, Yu L J 2005 J. Semicond. 26 281
[13] Guo W H, Li W J, Huang Y Z 2001 IEEE Microwave Wireless Compon. Lett. 11 223
[14] Lalanne P, Mias S, Hugonin J P 2004 Opt. Express 12 458
[15] Jugessur A S, Pottier P, De La Rue R M 2003 Electron. Lett. 39 367
Catalog
Metrics
- Abstract views: 8689
- PDF Downloads: 1023
- Cited By: 0