Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of determining microwave dissipation of Josephson junctions with non-linear frequency response

Chen Heng-Jie Xue Hang Li Shao-Xiong Wang Zhen

Citation:

A method of determining microwave dissipation of Josephson junctions with non-linear frequency response

Chen Heng-Jie, Xue Hang, Li Shao-Xiong, Wang Zhen
PDF
HTML
Get Citation
  • Based on Josephson junction (JJ), superconducting quantum bit (qubit) is operated at frequencies of several GHz. Dissipation of JJs in this frequency range can cause energy relaxation in qubits, and limit coherence time, therefore it is highly concerned and needs to be determined quantitatively. The dissipation of JJs can be quantified by microwave quality factor. It is usually done at very low temperature (~mK) to determine whether a JJ is suitable for qubit devices by measuring the quality factor. In this paper, a method based on nonlinear frequency response of JJs is proposed to determine the quality factor. This method can be used in thermal activation regime, which may bring great conveniences to experiments. To analyze high frequency properties of JJs, the dynamic equation of a current-biased JJ, which describes high frequency oscillation of the JJ, is introduced. A fourth-order potential approximation is used to obtain the analytical equation of non-linear response. The dependence on quality factor, as well as on amplitude, of difference between JJ’s plasma frequency and resonant frequency, is derived from the equation. The approximate treatment is quantitatively validated by our numerical simulations with practical JJ parameters including different environment influences. Thus, based on nonlinear frequency response of JJs, a reliable and simple method to determine quality factor of JJ is proposed, which is desirable for exploring JJ based microwave devices such as parametric amplifier, superconducting qubit. Being driven well into the nonlinear microwave response regime, due to frequency-amplitude interaction, the resonant frequency of a current bias JJ deviates from the JJ’s plasma frequency. The deviation is directly related to the microwave quality factor. Hence, the quality factor can be deducted from the experimental measurement of the resonant frequency deviation, with different microwave power values applied. In comparison with linear resonance experiment, the nonlinear resonance used by the proposed method produces stronger signal. Therefore it is more robust against external noise. When being conducted at high temperature, the proposed method is more reliable. The accuracy of the measured quality factor primarily depends on those of the JJ’s parameters such as critical current and capacitance, while those parameters can be experimentally determined with high precision.
      Corresponding author: Li Shao-Xiong, sxli@mail.sim.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771459).
    [1]

    Devoret M H Schoelkopf R J 2013 Science 339 1169Google Scholar

    [2]

    van Theodore D, Charles W T 1998 Principles of Superconductive Devices and Circuits Second Edition (Upper Saddle River: Prentice Hall) p194

    [3]

    Mattis D C, Bardeen J 1958 Phys. Rev. 111 412Google Scholar

    [4]

    Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A, Zwerger W 1987 Rev. Mod. Phys. 59 1Google Scholar

    [5]

    Makhlin Y, Schön G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar

    [6]

    Martinis J M, Cooper K B, McDermott R, Steffen M, Ansmann M, Osborn K D, Cicak K, Oh S, Pappas D P, Simmonds R W, Yu C C 2005 Phys. Rev. Lett. 95 210503Google Scholar

    [7]

    Tinkham M 2004 Introduction to Superconductivity (2nd Ed.) (Dover) p76

    [8]

    Pop I M, Geerlings K, Catelani G, Schoelkopf R J, Glazman L I, Devoret M H 2014 Nature 508 369Google Scholar

    [9]

    Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, RosenBerg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J, Oliver W D 2016 Nat. Commun. 7 12964Google Scholar

    [10]

    Cosmelli C, Carelli P, Castellano M G, Chiarello F, Diambrini Palazzi G, Leoni R, Torrioli G 1999 Phys. Rev. Lett. 82 5357Google Scholar

    [11]

    Han S, Rouse R 2001 Phys. Rev. Lett. 86 4191Google Scholar

    [12]

    Dutta S K, Xu H, Berkley A J, Ramos R C, Gubrud M A, Anderson J R, Lobb C J, Wellstood F C 2004 Phys. Rev. B 70 140502Google Scholar

    [13]

    Han S, Yu Y, Chu X, Chu S, Wang Z 2001 Science 293 1457Google Scholar

    [14]

    McCumber D E 1968 J. Appl. Phys. 39 3113Google Scholar

    [15]

    Stewart W C 1968 Appl. Phys. Lett. 12 277Google Scholar

    [16]

    Landau L D, Lifshitz E M 2007 Mechanics Third Edition (Beijing: World Publishing Corporation) p88

    [17]

    Li S X, Yu Y, Zhang Y, Qiu W, Han S, Wang Z 2002 Phys. Rev. Lett. 89 098301Google Scholar

    [18]

    Martinis J M, Nam S, Aumentado J 2002 Phys. Rev. Lett. 89 117901Google Scholar

    [19]

    Devoret M H, Esteve D, Martinis J M, Cleland A, Clarke J 1987 Phys. Rev. B 36 58Google Scholar

    [20]

    Manucharyan V E, Boaknin E, Metcalfe M, Vijay R, Siddiqi I, Devoret M 2007 Phys. Rev. B 76 014524Google Scholar

    [21]

    Mao B, Han S 2007 IEEE Trans. Appl. Supercond. 17 94Google Scholar

    [22]

    Sun G, Chen J, Ji Z, Xu W, Kang L, Wu P, Dong N, Mao G, Yu Y, Xing D 2006 App. Phys. Lett. 89 082516Google Scholar

  • 图 1  计算得到的相位粒子在相空间中的运动轨迹 纵坐标$ v = {{{\rm{d}}\phi } / {{\mathop{\scriptsize\rm d}\nolimits} \tau }}$, 计算采用的实验参数为${i_{{\rm{dc}}}} = {\rm 0.473},{i_{{\rm{rf}}}} =$$ {\rm 5.5} \times {\rm 10^{ - 4}}$, γ = 0.9306

    Figure 1.  Calculated trajectory of phase particle with experiment parameters for junction 3: ${i_{{\rm{dc}}}} = 0.473$, ${i_{{\rm{rf}}}} = 5.5 \times $10–4, γ = 0.9306. Vertical axis $v = {{{\rm{d}}\phi } / {{\rm{d}}\tau }}$.

    图 2  结(${I_{\rm{C}}} = 8$ μA, Q = 515.7)在不同的微波驱动下, (5)式(曲线)和模拟(误差棒)得到的响应振幅b随归一直流偏置${i_{\rm{dc}}}$的函数变化关系, 响应曲线按其最大振幅从小到大顺序对应的外加微波强度分别为${i_{{\rm{rf}}}}={\rm{ 1}}.{\rm{63}} \times {\rm{1}}{{\rm{0}}^{ - 4}},{\rm{ 2}}.{\rm{44}} \times $${\rm{1}}{{\rm{0}}^{ - 4}},{\rm{ 3}}.{\rm{67}} \times {\rm{1}}{{\rm{0}}^{ - 4}}$$ {\rm{5}}.{\rm{50}} \times {\rm{1}}{{\rm{0}}^{ - 4}}$, 点划线显示了最大振幅对应的${i_{{\rm{dc}}}}$随外加微波强度的变化

    Figure 2.  Microwave response curves obtained by Eq. (5) (curves) and numerical simulation (error bars), for junction (${I_{\rm{C}}} = 8$ μA, Q = 515.7) with applied microwave ${i_{{\rm{rf}}}}=$${\rm{ 1}}.{\rm{63}} \times {\rm{1}}{{\rm{0}}^{ - 4}},{\rm{ 2}}.{\rm{44}} \times {\rm{1}}{{\rm{0}}^{ - 4}},{\rm{ 3}}.{\rm{67}} \times {\rm{1}}{{\rm{0}}^{ - 4}}\;{\rm{ and }}\;5.{\rm{50}} \times {\rm{1}}{{\rm{0}}^{ - 4}}$ for the curves with the maximum amplitude from small to large respectively. Dot-dash line shows the dependence of ${i_{{\rm{dc}}}}$ where corresponding to the maximum oscillation amplitude on the power of the applied microwave.

    图 3  表1中三个样品结的$ \tilde v = \sqrt {{{\Delta \omega }}/{k}} {\omega _{\rm{p}}}$$ {i_{{\rm{rf}}}}$的变化关系图, 线是(7)式的结果, 误差棒是$\tilde v $的数值模拟结果, 图中直线斜率从小到大分别对应Q值163.0(结1), 508.6(结2), 1549.1(结3)

    Figure 3.  $\tilde v = \sqrt {{{\Delta \omega }}/{k}} {\omega _{\rm{p}}}$ as a function of ${i_{{\rm{rf}}}}$ for different parameters of sample Josephson junctions in Table 1. Lines are results of Eq. (7). Error bars are numerical simulation results of $\tilde v$. The lines of slops from small to large corresponding to Q values: 163.0 (junction 1), 508.6 (junction 2), 1549.1 (junction 3).

    图 4  结2在不同的电路环境下, 导致不同的品质因子Q (51.6, 257.8, 515.7, 1533.0, 对应直线斜率从小到大)时, $\tilde v$${i_{{\rm{rf}}}}$的变化关系, 直线是(7)式的结果, 误差棒是$\tilde v$的数值模拟结果

    Figure 4.  $\tilde v$ as a function of ${i_{{\rm{rf}}}}$ for different quality factors. Lines are Eq. (7)’s results. Error bars are numerical simulation results of $\tilde v$. The lines of slops from small to large corresponding to Q values: 51.6, 257.8, 515.7, 1533.0 accounting for junction 2 with different environment influences.

    表 1  数值模拟采用的结参数

    Table 1.  Parameters of Josephson junctions used in numerical simulations.

    结参数结1结2结3
    临界电流密度jc/A·cm–2100150200
    比电容Cs/fF·μm–242.946.450.5
    品质因子Q163.0508.61459.1
    DownLoad: CSV

    表 2  数值模拟采用的实验参数

    Table 2.  Experiment settings used in numerical simulations.

    实验参数表示符号取值
    归一直流偏置idc0.46—0.52
    归一微波电流irf1.6 × 10–4—5.5 × 10–4
    归一微波频率γ0.9306
    DownLoad: CSV
    Baidu
  • [1]

    Devoret M H Schoelkopf R J 2013 Science 339 1169Google Scholar

    [2]

    van Theodore D, Charles W T 1998 Principles of Superconductive Devices and Circuits Second Edition (Upper Saddle River: Prentice Hall) p194

    [3]

    Mattis D C, Bardeen J 1958 Phys. Rev. 111 412Google Scholar

    [4]

    Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A, Zwerger W 1987 Rev. Mod. Phys. 59 1Google Scholar

    [5]

    Makhlin Y, Schön G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar

    [6]

    Martinis J M, Cooper K B, McDermott R, Steffen M, Ansmann M, Osborn K D, Cicak K, Oh S, Pappas D P, Simmonds R W, Yu C C 2005 Phys. Rev. Lett. 95 210503Google Scholar

    [7]

    Tinkham M 2004 Introduction to Superconductivity (2nd Ed.) (Dover) p76

    [8]

    Pop I M, Geerlings K, Catelani G, Schoelkopf R J, Glazman L I, Devoret M H 2014 Nature 508 369Google Scholar

    [9]

    Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, RosenBerg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J, Oliver W D 2016 Nat. Commun. 7 12964Google Scholar

    [10]

    Cosmelli C, Carelli P, Castellano M G, Chiarello F, Diambrini Palazzi G, Leoni R, Torrioli G 1999 Phys. Rev. Lett. 82 5357Google Scholar

    [11]

    Han S, Rouse R 2001 Phys. Rev. Lett. 86 4191Google Scholar

    [12]

    Dutta S K, Xu H, Berkley A J, Ramos R C, Gubrud M A, Anderson J R, Lobb C J, Wellstood F C 2004 Phys. Rev. B 70 140502Google Scholar

    [13]

    Han S, Yu Y, Chu X, Chu S, Wang Z 2001 Science 293 1457Google Scholar

    [14]

    McCumber D E 1968 J. Appl. Phys. 39 3113Google Scholar

    [15]

    Stewart W C 1968 Appl. Phys. Lett. 12 277Google Scholar

    [16]

    Landau L D, Lifshitz E M 2007 Mechanics Third Edition (Beijing: World Publishing Corporation) p88

    [17]

    Li S X, Yu Y, Zhang Y, Qiu W, Han S, Wang Z 2002 Phys. Rev. Lett. 89 098301Google Scholar

    [18]

    Martinis J M, Nam S, Aumentado J 2002 Phys. Rev. Lett. 89 117901Google Scholar

    [19]

    Devoret M H, Esteve D, Martinis J M, Cleland A, Clarke J 1987 Phys. Rev. B 36 58Google Scholar

    [20]

    Manucharyan V E, Boaknin E, Metcalfe M, Vijay R, Siddiqi I, Devoret M 2007 Phys. Rev. B 76 014524Google Scholar

    [21]

    Mao B, Han S 2007 IEEE Trans. Appl. Supercond. 17 94Google Scholar

    [22]

    Sun G, Chen J, Ji Z, Xu W, Kang L, Wu P, Dong N, Mao G, Yu Y, Xing D 2006 App. Phys. Lett. 89 082516Google Scholar

  • [1] Li Zhong-Xiang, Wang Shu-Ya, Huang Zi-Qiang, Wang Chen, Mu Qing. Preparation of Al2O3 tunnel barrier layer in atome-level controlled Josephson junction. Acta Physica Sinica, 2022, 71(21): 218102. doi: 10.7498/aps.71.20220820
    [2] Su Fei-Fan, Yang Zhao-Hua, Zhao Shou-Kuan, Yan Hai-Sheng, Tian Ye, Zhao Shi-Ping. Fabrication of superconducting qubits and auxiliary devices with niobium base layer. Acta Physica Sinica, 2022, 71(5): 050303. doi: 10.7498/aps.71.20211865
    [3] Xiong Lei, Ding Hong-Wei, Li Guang-Yuan. Quadrupolar lattice plasmon modes induced by diffraction of high-quality factors in silver nanoparticle arrays. Acta Physica Sinica, 2022, 71(4): 047802. doi: 10.7498/aps.71.20211629
    [4] Xu Da, Wang Yi-Pu, Li Tie-Fu, You Jian-Qiang. Coherent coupling in a driven qubit-magnon hybrid quantum system. Acta Physica Sinica, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [5] Diffraction-induced quadrupolar lattice plasmon modes of high-quality factors for silver nanoparticle arrays. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211629
    [6] Han Jin-Ge, Ouyang Peng-Hui, Li En-Ping, Wang Yi-Wen, Wei Lian-Fu. Experimentally estimating of physical parameters of the fabricated superconducting Josephson junctions. Acta Physica Sinica, 2021, 70(17): 170304. doi: 10.7498/aps.70.20210393
    [7] Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning. Novel superconducting qubits and quantum physics. Acta Physica Sinica, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [8] Wang Song, Wang Xing-Yun, Zhou Zhang-Yu, Yang Fa-Shun, Yang Jian, Fu Xing-Hua. Preparation, microstructure of B film and its applications in MgB2 superconducting Josephson junction. Acta Physica Sinica, 2016, 65(1): 017401. doi: 10.7498/aps.65.017401
    [9] Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei. Progress of coupled superconducting qubits. Acta Physica Sinica, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [10] Cao Wen-Hui, Li Jin-Jin, Zhong Qing, Guo Xiao-Wei, He Qing, Chi Zong-Tao. Fabrication and characterization of single Nb/NbxSi1-x/Nb Josephson junction for voltage standard. Acta Physica Sinica, 2012, 61(17): 170304. doi: 10.7498/aps.61.170304
    [11] Zhang Li-Sen, Cai Li, Feng Chao-Wen. Analytical analysis of periodic solution and its stability in Josephson junction. Acta Physica Sinica, 2011, 60(3): 030308. doi: 10.7498/aps.60.030308
    [12] Zhang Li-Sen, Cai Li, Feng Chao-Wen. Hopf bifurcation and chaotification of Josephson junction with linear delayed feedback. Acta Physica Sinica, 2011, 60(6): 060306. doi: 10.7498/aps.60.060306
    [13] Yue Hong-Wei, Yan Shao-Lin, Zhou Tie-Ge, Xie Qing-Lian, You Feng, Wang Zheng, He Ming, Zhao Xin-Jie, Fang Lan, Yang Yang, Wang Fu-Yin, Tao Wei-Wei. Millimeter wave irradiation characteristics of high temperature superconductor bicrystal Josephson junction embedded in a Fabry-Perot resonator. Acta Physica Sinica, 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [14] Yue Hong-Wei, Wang Zheng, Fan Bin, Song Feng-Bin, You Feng, Zhao Xin-Jie, He Ming, Fang Lan, Yan Shao-Lin. Millimeter wavelength coherent emission from high temperature superconducting bicrystal Josephson junction array. Acta Physica Sinica, 2010, 59(8): 5755-5758. doi: 10.7498/aps.59.5755
    [15] Cui Da-Jian, Lin De-Hua, Yu Hai-Feng, Peng Zhi-Hui, Zhu Xiao-Bo, Zheng Dong-Ning, Jing Xiu-Nian, Lü Li, Zhao Shi-Ping. Quantum corrections in fitting the switching current distributions of intrinsic Josephson junction. Acta Physica Sinica, 2008, 57(9): 5933-5936. doi: 10.7498/aps.57.5933
    [16] Li Zhao-Xin, Zou Jian, Cai Jin-Fang, Shao Bin. Entanglement between charge qubit and quantized field. Acta Physica Sinica, 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [17] Hou Lu-Jing, Wang You-Nian. Theoretical study on nonlinear resonances of a charged micro-particle in a RF sheath. Acta Physica Sinica, 2003, 52(2): 434-441. doi: 10.7498/aps.52.434
    [18] Du Qi-Zhen, Yang Hui-Zhu. . Acta Physica Sinica, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
    [19] WANG ZHEN-YU, LIAO HONG-YIN, ZHOU SHI-PING. STUDIES OF THE DC BIASED JOSEPHSON JUNCTION COUPLED TO A RESONANT TANK. Acta Physica Sinica, 2001, 50(10): 1996-2000. doi: 10.7498/aps.50.1996
    [20] WANG DAN-LING, GONG QI-HUANG, WANG KAI-GE, YANG GUO-JIAN. QUANTUM NONDEMOLITION MEASUREMENTS IN DEGENERATE OPTICAL PARAMETRIC OSCILLATOR. Acta Physica Sinica, 2000, 49(8): 1484-1489. doi: 10.7498/aps.49.1484
Metrics
  • Abstract views:  7101
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2019
  • Accepted Date:  21 March 2019
  • Available Online:  01 June 2019
  • Published Online:  05 June 2019

/

返回文章
返回
Baidu
map