-
应用第一性原理密度泛函理论研究了单壁碳纳米管中Stone-Wales(SW)缺陷和氮掺杂情况下的电子结构和光学性质.研究发现,含氮SW缺陷单壁碳纳米管体系的总能降低,结合更稳定,且在费米能级附近出现一条半满的杂质带,并且随着氮掺杂位置的不同,掺杂能态出现显著差异.碳管的吸收和反射明显减弱且吸收峰和反射峰在低能区发生红移现象,在能量小于11eV附近均出现杂质特征峰.本文对计算结果进行了分析研究,可望为含氮SW缺陷碳管在光电材料中的应用提供理论依据.
-
关键词:
- 单壁碳纳米管 /
- Stone-Wales缺陷 /
- 氮掺杂 /
- 光学性质
The effects of nitrogen substitutional doping in Stone-Wales (SW) defect on the electronic structure and the optical property of single-walled nanotube are simulated by using the density functional theory based on the first-principles. It is found that the system energy reduces and binding becomes stabler, and the nitrogen in SW produces a semi-full band near the Fermi level in which the electron effective mass varies with the changing of the position of nitrogen. The absorption and the reflectivity weakened obviously and absorption and reflection peak are both redshifted in the lower energy region. There is a distinct peak at the energy less than 11eV.The results are discussed theoretically. The nitrogen doping and SW defect of carbon nanotubes are expected to provide a theoretical basis for the photoelectric material applications.[1] Iijima S 1991 Nature 354 56
[2] Iijima S 1993 Nature 363 603
[3] Paradise M, Goswami T 2007 Mater Des. 28 1477
[4] Meunier V,Lambin P H 2000 Carbon 38 1729
[5] Nardelli M B, Fattebert J L, Orlikowski D 2000 Carbon 38 1703
[6] Zhou L G, Meng F Y, Shi S Q 2003 Nanotechnology 3 154
[7] Talukdar K, Mitra A K 2010 Nanotechnology 1 215
[8] Xu H, Xiao J,Ouyang F 2010 Acta Phys. Sin. 59 4186 (in Chinese)[徐 慧、肖 金、欧阳方平 2010 59 4186]
[9] Chen G D, Wang L D, Zhang J Q, Cao D C, An B, Ding F C, Liang J K 2008 Acta Phys. Sin. 57 7164 (in Chinese) [陈国栋、王六定、张教强、曹得财、安 博、丁富才、梁锦奎 2008 57 7164]
[10] Peng S, Cho K 2003 Nano Lett.3 513
[11] Wei J W, Hu H F, Zeng H, Zhou Z P, Yang W W, Peng P 2008 Physics E 40 462
[12] Ganji M D 2008 Nanotechnology 19 025709
[13] Zhang Y, Wen B, Song X Y, Li T J 2010 Acta Phys. Sin. 59 3583 (in Chinese) [张 宇、温 斌、宋肖阳、李廷举 2010 59 3583]
[14] Glerup M, Steinmetz J, Samaille D,Stephan O, Enouz S, Loisean A 2004 Chem. Phys. Lett. 387 193
[15] Wang B, Ma Y, Wu Y, Li N, Huang Y, Chen Y 2009 Carbon 47 212
[16] Wei J W, Hu H F, Zeng H, Wang Z Y, Wang L 2007 Appl. Phys. Lett. 91 092121
[17] Srivastva D, Menon M, Cho K 1999 Phys. Rev. Lett. 83 2973
[18] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Sjostrom H, Stafstroom S, Boman M, Sundgren J E 1995 Phys. Rev. Lett. 75 1336
[20] Guo G Y, Chu K C, Wang D S, Duan C G 2004 Phys. Rev. B 69 205416
-
[1] Iijima S 1991 Nature 354 56
[2] Iijima S 1993 Nature 363 603
[3] Paradise M, Goswami T 2007 Mater Des. 28 1477
[4] Meunier V,Lambin P H 2000 Carbon 38 1729
[5] Nardelli M B, Fattebert J L, Orlikowski D 2000 Carbon 38 1703
[6] Zhou L G, Meng F Y, Shi S Q 2003 Nanotechnology 3 154
[7] Talukdar K, Mitra A K 2010 Nanotechnology 1 215
[8] Xu H, Xiao J,Ouyang F 2010 Acta Phys. Sin. 59 4186 (in Chinese)[徐 慧、肖 金、欧阳方平 2010 59 4186]
[9] Chen G D, Wang L D, Zhang J Q, Cao D C, An B, Ding F C, Liang J K 2008 Acta Phys. Sin. 57 7164 (in Chinese) [陈国栋、王六定、张教强、曹得财、安 博、丁富才、梁锦奎 2008 57 7164]
[10] Peng S, Cho K 2003 Nano Lett.3 513
[11] Wei J W, Hu H F, Zeng H, Zhou Z P, Yang W W, Peng P 2008 Physics E 40 462
[12] Ganji M D 2008 Nanotechnology 19 025709
[13] Zhang Y, Wen B, Song X Y, Li T J 2010 Acta Phys. Sin. 59 3583 (in Chinese) [张 宇、温 斌、宋肖阳、李廷举 2010 59 3583]
[14] Glerup M, Steinmetz J, Samaille D,Stephan O, Enouz S, Loisean A 2004 Chem. Phys. Lett. 387 193
[15] Wang B, Ma Y, Wu Y, Li N, Huang Y, Chen Y 2009 Carbon 47 212
[16] Wei J W, Hu H F, Zeng H, Wang Z Y, Wang L 2007 Appl. Phys. Lett. 91 092121
[17] Srivastva D, Menon M, Cho K 1999 Phys. Rev. Lett. 83 2973
[18] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Sjostrom H, Stafstroom S, Boman M, Sundgren J E 1995 Phys. Rev. Lett. 75 1336
[20] Guo G Y, Chu K C, Wang D S, Duan C G 2004 Phys. Rev. B 69 205416
计量
- 文章访问数: 8811
- PDF下载量: 652
- 被引次数: 0