搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声黑洞楔形结构振动模式转换超声换能器

王怡 陈诚 林书玉

引用本文:
Citation:

声黑洞楔形结构振动模式转换超声换能器

王怡, 陈诚, 林书玉
cstr: 32037.14.aps.74.20241326

An ultrasonic transducer for vibration mode conversion of wedge-shaped structure of acoustic black hole

WANG Yi, CHEN Cheng, LIN Shuyu
cstr: 32037.14.aps.74.20241326
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于声黑洞结构独特的声波捕获与能量聚集效应, 提出了一种新型声黑洞楔形结构振动模式转换超声换能器. 该换能器由一个纵向夹心式换能器和一个声黑洞楔形结构辐射板组成. 基于铁木辛柯梁理论, 利用传输矩阵法建立了辐射板弯曲振动的理论模型, 计算得到的振动频率与有限元仿真频率吻合较好. 对换能器的电阻抗频率响应特性、振动模态以及空气中近场辐射声压分布进行了仿真模拟, 结果显示, 声黑洞楔形结构辐射板的振幅逐级增大, 近场辐射声压呈现出梯度分布的特点. 加工了换能器样机, 并对其进行实验测试, 测试结果验证了设计方法的可行性. 最后进行了超声悬浮实验, 结果表明声黑洞设计可以赋能于超声悬浮技术, 构造出声压梯度分布的声场, 实现粒子筛选.
    Acoustic black hole (ABH) structure has been extensively used in vibration mitigation, noise reduction, energy harvesting and so on, owing to its unique sound wave trapping and energy concentration effects. Besides, ABH structure holds emerging potential in improving the performance of ultrasonic device and constructing multifunctional acoustic field. Hence, an ultrasonic mode-conversion transducer consisting of a longitudinal sandwich transducer and an ABH wedge radiant plate is proposed in this work, in order to explore the potential applications of ABH in ultrasonic levitation and multifunctional particle manipulation. The theoretical model of flexural vibration of the radiant plate is established by utilizing Timoshenko beam theory and transfer matrix method, and the calculated vibration frequencies are in good agreement with those obtained by finite element method (FEM). The electrical impedance frequency response characteristics, vibration modes and the near-field sound pressure distribution of the transducer in air are also simulated. The results indicate that the amplitude of the ABH wedge radiant plate increases stepwise, and the sound pressure exhibits a gradient distribution. A prototype of the transducer is fabricated and experimentally tested, confirming the accuracy of FEM simulations and the feasibility of the design approach. Finally, the result of the ultrasonic levitation experiment indicates that the ABH design can give rise to gradient distribution of sound pressure in standing wave sound field for achieving precise particle sorting.
      通信作者: 林书玉, sylin@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174240, 11874253, 11674206)资助的课题.
      Corresponding author: LIN Shuyu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174240, 11874253, 11674206).
    [1]

    Krylov V V 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1296Google Scholar

    [2]

    Bowyer E P, Krylov V V 2015 Appl. Acoust. 88 30Google Scholar

    [3]

    Chong B M P, Tan L B, Lim K M, Lee H P 2017 Int. J. Appl. Mech. 9 1750078Google Scholar

    [4]

    Zhao C, Prasad M G 2019 Acoustics 1 220Google Scholar

    [5]

    Krylov V V, Winward R 2007 J. Sound Vib. 300 43Google Scholar

    [6]

    Deng J, Guasch O, Maxit L, Gao N S 2022 J. Sound Vib. 526 19Google Scholar

    [7]

    Deng J, Gao N S, Chen X 2023 Thin Walled Struct. 184 6Google Scholar

    [8]

    Zhao L, Conlon S C, Semperlotti F 2015 Smart Mater. Struct. 24 065039Google Scholar

    [9]

    Liang Y K, Ji H L, Qiu J H, Cheng L, Wu Y P, Zhang C 2018 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) Auckland, New Zealand, July 9–12, 2018 pp1372–1377

    [10]

    Li H, Doaré O, Touzé C, Pelat A, Gautier F 2022 Int. J. Solids Struct. 238 111409Google Scholar

    [11]

    Zhang L, Kerschen G, Cheng L 2022 Mech. Syst. Signal Process. 177 109244Google Scholar

    [12]

    Zhang L, Tang X, Qin Z, Chu F 2022 Appl. Phys. Lett. 121 013902Google Scholar

    [13]

    Remillieux M C, Anderson B E, Le Bas P Y, Ulrich T J 2014 Ultrasonics 54 1409Google Scholar

    [14]

    Anderson B E, Remillieux M C, Le Bas P Y, Ulrich T J, Pieczonka L 2015 Ultrasonics 63 141Google Scholar

    [15]

    刘洋, 陈诚, 林书玉 2024 73 084302Google Scholar

    Liu Y, Chen C, Lin S Y 2024 Acta Phys. Sin. 73 084302Google Scholar

    [16]

    Chen C, Liu Y, Wang C H, Guo J Z, Lin S Y 2024 Ultrason. Sonochem. 111 107106Google Scholar

    [17]

    Zhan L P, Hua T Z, Chun Y K, Naquin T D, Jing H N, Yu H H, Yan C J, Xia M Q, Bachman H, Ran Z P, Hong X X, Hui H J, Huang T J 2022 Sci. Adv. 8 eabm2592Google Scholar

    [18]

    Yin Q, Yong S H, Long W Z, Chao M Z, Ming Z W 2024 Microsyst. Nanoeng. 10 144Google Scholar

    [19]

    林书玉, 张福成, 郭孝武, 董胜林 1995 陕西师范大学学报(自然科学版) 23 43

    Lin S Y, Zhang F C, Guo X W, Dong S L 1995 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 23 43

    [20]

    林书玉 2004 超声换能器的原理及设计 (北京: 科学出版社) 第91—111页

    Lin S Y 2004 The Theory and Design of Ultrasonic Transducers (Beijing: Science Press) pp91–111

    [21]

    Williams F W, Banerjee J R 1985 J. Sound Vib. 99 121Google Scholar

    [22]

    Miklowitz J 2021 J. Appl. Mech. 20 511Google Scholar

    [23]

    Mori E 1989 Ultrasonics International 89 Conference Proceedings Madrid, Spain, July 3–7, 1989 p256

    [24]

    Zhou G, Li M 2000 J. Acoust. Soc. Am. 107 1358Google Scholar

  • 图 1  声黑洞楔形结构振动模式转换超声换能器

    Fig. 1.  Ultrasonic transducer with acoustic black hole wedge structure based on vibration mode-conversion.

    图 2  换能器尺寸参数示意图 (a)纵向夹心式换能器; (b)声黑洞楔形结构辐射板

    Fig. 2.  Schematic diagram of the transducer’s dimensions: (a) The longitudinal sandwich transducer; (b) the ABH wedge radiant plate.

    图 3  辐射板的离散振动单元划分

    Fig. 3.  Discrete vibration units division of the radiant plate.

    图 4  离散振动单元边界力学量

    Fig. 4.  Boundary mechanical quantities of discrete vibration units.

    图 5  辐射板的网格划分

    Fig. 5.  Meshing of the radiant plate.

    图 6  换能器整体的网格划分

    Fig. 6.  Meshing of the whole transducer.

    图 7  有限元仿真得到的换能器电阻抗频率响应曲线

    Fig. 7.  Electrical impedance frequency response curve of the transducer obtained by FEM.

    图 8  (a)换能器整体模态; (b)辐射板弯曲振动模态

    Fig. 8.  (a) Vibration mode of the whole transducer; (b) the flexural vibration mode of the radiant plate.

    图 9  归一化的辐射板横向位移分布曲线

    Fig. 9.  Curve of normalized transverse displacement distribution of the radiant plate.

    图 10  空气中辐射近声场建模的网格划分

    Fig. 10.  Meshing of the modeling of radiated near sound field in air.

    图 11  空气中近场声压分布有限元仿真结果

    Fig. 11.  Near-field sound pressure distribution in air obtained by FEM.

    图 12  声黑洞楔形结构振动模式转换换能器样机

    Fig. 12.  Prototype of the ultrasonic transducer with acoustic black hole wedge structure based on vibration mode-conversion.

    图 13  阻抗分析实验 (a) WK6500B精密阻抗分析仪及换能器样机; (b)换能器输入电阻抗及相位的频率响应曲线

    Fig. 13.  Impedance analysis experiment: (a) The WK6500B precision impedance analyzer and the transducer prototype; (b) frequency response curve of the input electric impedance and phase of the transducer.

    图 14  激光测振实验 (a) Polytec PSV-400全场扫描式激光振动测量系统及换能器样机; (b)辐射板弯曲振动模态

    Fig. 14.  Laser vibrometry experiment: (a) The Polytec PSV-400 full-field scanning laser vibrometry system and the transducer prototype; (b) flexural vibration mode of the radiant plate.

    图 15  空气中声场测量实验系统

    Fig. 15.  Experimental system for acoustic field measurement in air.

    图 16  空气中近场声压分布实验测量与有限元仿真结果对比 (a)测量点示意; (b)距辐射面10 mm处长度方向上声压分布; (c)距辐射面10 mm处宽度方向上声压分布; (d)轴向上声压分布

    Fig. 16.  Comparison of the experimental and FEM’s results of near-field sound pressure distribution in air: (a) Schematic diagram of measuring points; (b) sound pressure distribution in the length direction 10 mm away from the radiant surface; (c) sound pressure distribution in the width direction 10 mm away from the radiant surface; (d) axial sound pressure distribution.

    图 17  (a)超声悬浮实验平台; (b) EPS小球的梯度悬浮

    Fig. 17.  (a) Platform of ultrasonic levitation experiment; (b) gradient levitation of EPS pellets.

    表 1  辐射板弯曲振动频率计算结果对比

    Table 1.  Comparison of calculated flexural vibration frequency of the radiant plate.

    参数 一阶 二阶 三阶 四阶 五阶 六阶
    ${f_{\text{T}}}$/Hz 5575 13909 26722 43370 62585 83304
    ${f_{\text{F}}}$/Hz 5431 13402 26101 43287 62847 83737
    ${\varDelta _1}$/% 2.65 3.78 2.38 0.19 0.42 0.52
    下载: 导出CSV
    Baidu
  • [1]

    Krylov V V 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1296Google Scholar

    [2]

    Bowyer E P, Krylov V V 2015 Appl. Acoust. 88 30Google Scholar

    [3]

    Chong B M P, Tan L B, Lim K M, Lee H P 2017 Int. J. Appl. Mech. 9 1750078Google Scholar

    [4]

    Zhao C, Prasad M G 2019 Acoustics 1 220Google Scholar

    [5]

    Krylov V V, Winward R 2007 J. Sound Vib. 300 43Google Scholar

    [6]

    Deng J, Guasch O, Maxit L, Gao N S 2022 J. Sound Vib. 526 19Google Scholar

    [7]

    Deng J, Gao N S, Chen X 2023 Thin Walled Struct. 184 6Google Scholar

    [8]

    Zhao L, Conlon S C, Semperlotti F 2015 Smart Mater. Struct. 24 065039Google Scholar

    [9]

    Liang Y K, Ji H L, Qiu J H, Cheng L, Wu Y P, Zhang C 2018 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) Auckland, New Zealand, July 9–12, 2018 pp1372–1377

    [10]

    Li H, Doaré O, Touzé C, Pelat A, Gautier F 2022 Int. J. Solids Struct. 238 111409Google Scholar

    [11]

    Zhang L, Kerschen G, Cheng L 2022 Mech. Syst. Signal Process. 177 109244Google Scholar

    [12]

    Zhang L, Tang X, Qin Z, Chu F 2022 Appl. Phys. Lett. 121 013902Google Scholar

    [13]

    Remillieux M C, Anderson B E, Le Bas P Y, Ulrich T J 2014 Ultrasonics 54 1409Google Scholar

    [14]

    Anderson B E, Remillieux M C, Le Bas P Y, Ulrich T J, Pieczonka L 2015 Ultrasonics 63 141Google Scholar

    [15]

    刘洋, 陈诚, 林书玉 2024 73 084302Google Scholar

    Liu Y, Chen C, Lin S Y 2024 Acta Phys. Sin. 73 084302Google Scholar

    [16]

    Chen C, Liu Y, Wang C H, Guo J Z, Lin S Y 2024 Ultrason. Sonochem. 111 107106Google Scholar

    [17]

    Zhan L P, Hua T Z, Chun Y K, Naquin T D, Jing H N, Yu H H, Yan C J, Xia M Q, Bachman H, Ran Z P, Hong X X, Hui H J, Huang T J 2022 Sci. Adv. 8 eabm2592Google Scholar

    [18]

    Yin Q, Yong S H, Long W Z, Chao M Z, Ming Z W 2024 Microsyst. Nanoeng. 10 144Google Scholar

    [19]

    林书玉, 张福成, 郭孝武, 董胜林 1995 陕西师范大学学报(自然科学版) 23 43

    Lin S Y, Zhang F C, Guo X W, Dong S L 1995 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 23 43

    [20]

    林书玉 2004 超声换能器的原理及设计 (北京: 科学出版社) 第91—111页

    Lin S Y 2004 The Theory and Design of Ultrasonic Transducers (Beijing: Science Press) pp91–111

    [21]

    Williams F W, Banerjee J R 1985 J. Sound Vib. 99 121Google Scholar

    [22]

    Miklowitz J 2021 J. Appl. Mech. 20 511Google Scholar

    [23]

    Mori E 1989 Ultrasonics International 89 Conference Proceedings Madrid, Spain, July 3–7, 1989 p256

    [24]

    Zhou G, Li M 2000 J. Acoust. Soc. Am. 107 1358Google Scholar

  • [1] 朱光耀, 耿德路, 侯念嗣, 王时宇, 魏炳波. 超声悬浮条件下液态SCN-DC透明合金的形核规律与晶体生长研究.  , 2025, 74(7): . doi: 10.7498/aps.74.20241747
    [2] 林基艳, 陈诚, 郭林伟, 李耀, 林书玉, 孙姣夏, 徐洁. 声表面和拓扑缺陷结构对换能器耦合振动系统的声波调控.  , 2024, 73(22): 224301. doi: 10.7498/aps.73.20241199
    [3] 刘洋, 陈诚, 林书玉. 基于声黑洞设计理论的径向夹心式径-弯复合换能器.  , 2024, 73(8): 084302. doi: 10.7498/aps.73.20231983
    [4] 董宜雷, 陈诚, 林书玉. 基于传输矩阵法的任意变厚度环型压电超声换能器.  , 2023, 72(5): 054304. doi: 10.7498/aps.72.20222110
    [5] 林基艳, 林书玉. 管柱型近周期声子晶体点缺陷结构的大尺寸压电超声换能器.  , 2023, 72(9): 094301. doi: 10.7498/aps.72.20230195
    [6] 狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中. 共聚焦超声换能器的声场优化与粒子捕获.  , 2023, 72(1): 014301. doi: 10.7498/aps.72.20221547
    [7] 钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩. 基于换能器驱动信号特征的高强度聚焦超声焦域损伤实时监测.  , 2022, 71(3): 037201. doi: 10.7498/aps.71.20211443
    [8] 狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中. 共聚焦超声换能器的声场优化与粒子捕获.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221547
    [9] 陈诚, 林书玉. 基于2-2型压电复合材料的新型宽频带径向振动超声换能器.  , 2021, 70(1): 017701. doi: 10.7498/aps.70.20201352
    [10] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象.  , 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [11] 赵甜甜, 林书玉, 段祎林. 类声子晶体结构对超声塑料焊接工具横向振动的抑制.  , 2018, 67(22): 224207. doi: 10.7498/aps.67.20181150
    [12] 刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安. 长骨中振动声激发超声导波的方法.  , 2017, 66(15): 154303. doi: 10.7498/aps.66.154303
    [13] 秦修培, 耿德路, 洪振宇, 魏炳波. 超声悬浮过程中圆柱体的旋转运动机理研究.  , 2017, 66(12): 124301. doi: 10.7498/aps.66.124301
    [14] 丁亚军, 钱盛友, 胡继文, 邹孝. 超声相控阵在多层媒质中的声场模式优化.  , 2012, 61(14): 144301. doi: 10.7498/aps.61.144301
    [15] 赵贵敏, 陆明珠, 万明习, 方莉. 高分辨率扇形阵列超声激发振动声成像研究.  , 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [16] 陈 谦, 邹欣晔, 程建春. 超声波声孔效应中气泡动力学的研究.  , 2006, 55(12): 6476-6481. doi: 10.7498/aps.55.6476
    [17] 应祟福, 李明轩, 钟高琦, 刘献铎, 杨玉瑞. 控制超声测量用换能器首次波幅度比的方案.  , 1981, 30(1): 91-96. doi: 10.7498/aps.30.91
    [18] 探伤组. 电磁超声探伤实验.  , 1977, 26(4): 373-376. doi: 10.7498/aps.26.373
    [19] 严仁博. 超声楔形换能器的体波和瑞利表面波指向性图案.  , 1974, 23(6): 41-50. doi: 10.7498/aps.23.41
    [20] 魏荣爵, 张淑仪. 超声波在悬浮液(水)中的吸收.  , 1965, 21(5): 1061-1074. doi: 10.7498/aps.21.1061
计量
  • 文章访问数:  664
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-20
  • 修回日期:  2024-12-20
  • 上网日期:  2025-01-02
  • 刊出日期:  2025-02-20

/

返回文章
返回
Baidu
map