搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流固耦合传热作用下两颗粒拖曳-接触-翻滚运动研究

张销杰 赵千千 黄荣宗

引用本文:
Citation:

流固耦合传热作用下两颗粒拖曳-接触-翻滚运动研究

张销杰, 赵千千, 黄荣宗

Investigation of drafting-kissing-tumbling movement of two particles with conjugate heat transfer

ZHANG Xiaojie, ZHAO Qian-Qian, HUANG Rongzong
PDF
HTML
导出引用
  • 颗粒-流体界面处的耦合传热以及颗粒间的碰撞在颗粒沉降过程中起着至关重要的作用. 本文基于热颗粒流体积格子Boltzmann方法对流固耦合传热作用下封闭通道中两颗粒沉降过程拖曳-接触-翻滚运动开展了数值模拟研究, 探究了颗粒与流体比热容比${R_{{c_{\text{v}}}}}$、Grashof数$Gr$、颗粒初始温度对拖曳-接触-翻滚运动的影响. 结果表明, 随着比热容比${R_{{c_{\text{v}}}}}$的增加, 两冷颗粒沉降过程拖曳-接触-翻滚运动的拖曳时长和翻滚时长均减小, 而接触时长则相应增加. 随着Grashof数$Gr$的增加, 两冷颗粒沉降过程拖曳-接触-翻滚运动的拖曳时长显著减小, 但接触时长和翻滚时长则近似保持不变. 两冷颗粒沉降过程拖曳-接触-翻滚运动发生的时刻最早, 一冷一热颗粒次之, 两热颗粒最晚; 颗粒初始温度低于流体温度对拖曳-接触-翻滚运动的促进作用主要体现在拖曳阶段和接触阶段, 颗粒初始温度对翻滚时长则近似无影响.
    The conjugate heat transfer at the particle-fluid interface and the collision between particles play a crucial role in the sedimentation process of particles. In this work, the recent volumetric lattice Boltzmann method for thermal particulate flows with conjugate heat transfer is adopted to investigate the drafting-kissing-tumbling movement in the sedimentation process of two particles in a closed channel. This volumetric lattice Boltzmann method is based on double distribution functions, with the density distribution function used for the velocity field and the internal energy distribution function used for the temperature field. It is a single-domain approach, and the nonslip velocity condition within the solid domain can be strictly ensured. The difference in thermophysical properties between the solid and fluid can be correctly handled, and the conjugate heat transfer condition can be automatically achieved without any additional treatments. Based on this particle-resolved simulation, the influences of the solid-to-fluid specific heat ratio, the Grashof number, and the particle’s initial temperature on the drafting-kissing-tumbling movement are discussed in detail. It is found that the fluid cooled by the particle and thus subjected to the downward buoyancy force can promote particle sedimentation. As the specific heat ratio increases, the particle’s temperature rises relatively slowly. In the sedimentation of two cold particles, the drafting duration and tumbling duration of the drafting-kissing-tumbling movement decrease when the heat capacity ratio increases. In contrast, the kissing duration increases as the heat capacity ratio increases. When the Grashof number increases, the heat transfer between the particle and fluid is enhanced, and the drafting duration significantly decreases while the kissing duration and tumbling duration remain almost unchanged in the sedimentation of two cold particles. The particle’s initial temperature greatly affects the occurrence moment of the drafting-kissing-tumbling movement. To be specific, the drafting-kissing-tumbling movement occurs at the earliest moment for the sedimentation of two cold particles, followed by the sedimentation of one cold and one hot particle, and the latest for the sedimentation of two hot particles. The promoting effect of the low particle’s initial temperature on the drafting-kissing-tumbling movement mainly takes place in the dragging stage and kissing stage. The particle’s initial temperature has almost no influence on the tumbling duration.
  • 图 1  封闭通道中两颗粒沉降示意图

    Fig. 1.  Schematic of the sedimentation of two particles in an enclosure.

    图 2  不同${R_{{c_{\text{v}}}}}$时, 两颗粒沉降过程在$t = 0.084{\text{ s}}$时刻的无量纲温度场、速度矢量和颗粒位置 (a) ${R_{{c_{\text{v}}}}} = 0.25$; (b) ${R_{{c_{\text{v}}}}} = 1$; (c) ${R_{{c_{\text{v}}}}} = 4$; (d) ${R_{{c_{\text{v}}}}} = 16$

    Fig. 2.  Dimensionless temperature field, velocity vectors, and particle positions in the sedimentation process of two particles at time $t = 0.084{\text{ s}}$ for different ${R_{{c_{\text{v}}}}}$: (a) ${R_{{c_{\text{v}}}}} = 0.25$; (b) ${R_{{c_{\text{v}}}}} = 1$; (c) ${R_{{c_{\text{v}}}}} = 4$; (d) ${R_{{c_{\text{v}}}}} = 16$.

    图 3  不同${R_{{c_{\text{v}}}}}$时, 两颗粒沉降过程不同因素随时间的变化 (a) 质心水平速度${U_{{\text{c}}, x}}$; (b) 质心竖直速度${U_{{\text{c}}, y}}$; (c) 质心距离$S$; (d) 质心水平夹角$\theta $

    Fig. 3.  Variations of different factors with time in the sedimentation process of two particles for different ${R_{{c_{\text{v}}}}}$: (a) The horizontal velocity of mass center ${U_{{\text{c}}, x}}$; (b) the vertical velocity of mass center ${U_{{\text{c}}, y}}$; (c) the distance between mass center $S$; (d) the horizontal angle of mass center $\theta $.

    图 4  不同$Gr$时, 两颗粒沉降过程不同因素随时间的变化 (a) 质心水平速度${U_{{\text{c}}, x}}$; (b) 质心竖直速度${U_{{\text{c}}, y}}$; (c) 质心距离$S$; (d) 质心水平夹角$\theta $

    Fig. 4.  Variations of different factors with time in the sedimentation process of two particles for different $Gr$: (a) The horizontal velocity of mass center ${U_{{\text{c}}, x}}$; (b) the vertical velocity of mass center ${U_{{\text{c}}, y}}$; (c) the distance between mass center $S$; (d) the horizontal angle of mass center $\theta $.

    图 5  不同颗粒初始温度时, 两颗粒沉降过程不同因素随时间的变化 (a) 质心水平速度${U_{{\text{c}}, x}}$; (b) 质心竖直速度${U_{{\text{c}}, y}}$; (c) 质心距离$S$; (d) 质心水平夹角$\theta $

    Fig. 5.  Variations of different factors with time in the sedimentation process of two particles for different particle’s initial temperatures: (a) The horizontal velocity of mass center ${U_{{\text{c}}, x}}$; (b) the vertical velocity of mass center ${U_{{\text{c}}, y}}$; (c) the distance between mass center $S$; (d) the horizontal angle of mass center $\theta $.

    表 1  不同${R_{{c_{\text{v}}}}}$时, 两颗粒沉降过程的接触时刻${t_{{\text{kiss}}}}$、翻滚时刻${t_{{\text{tumble}}}}$、分离时刻${t_{{\text{detach}}}}$、拖曳时长$\Delta {t_{{\text{draft}}}}$、接触时长$\Delta {t_{{\text{kiss}}}}$、翻滚时长$\Delta {t_{{\text{tumble}}}}$

    Table 1.  The kissing, tumbling, and detaching moments (${t_{{\text{kiss}}}}$, ${t_{{\text{tumble}}}}$, and ${t_{{\text{detach}}}}$) and the drafting, kissing, and tumbling durations ($\Delta {t_{{\text{draft}}}}$, $\Delta {t_{{\text{kiss}}}}$, and $\Delta {t_{{\text{tumble}}}}$) in the sedimentation process of two particles for different ${R_{{c_{\text{v}}}}}$.

    ${R_{{c_{\text{v}}}}}$${t_{{\text{kiss}}}}$/s${t_{{\text{tumble}}}}$/s${t_{{\text{detach}}}}$/s$\Delta {t_{{\text{draft}}}}$/s$\Delta {t_{{\text{kiss}}}}$/s$\Delta {t_{{\text{tumble}}}}$/s
    0.250.7070.9381.8900.7070.2310.952
    10.5610.8211.7610.5610.2600.940
    40.3870.6891.5100.3870.3030.821
    160.3140.6861.3140.3140.3720.628
    下载: 导出CSV

    表 2  不同$Gr$时, 两颗粒沉降过程的接触时刻${t_{{\text{kiss}}}}$、翻滚时刻${t_{{\text{tumble}}}}$、分离时刻${t_{{\text{detach}}}}$、拖曳时长$\Delta {t_{{\text{draft}}}}$、接触时长$\Delta {t_{{\text{kiss}}}}$、翻滚时长$\Delta {t_{{\text{tumble}}}}$

    Table 2.  The kissing, tumbling, and detaching moments (${t_{{\text{kiss}}}}$, ${t_{{\text{tumble}}}}$, and ${t_{{\text{detach}}}}$) and the drafting, kissing, and tumbling durations ($\Delta {t_{{\text{draft}}}}$, $\Delta {t_{{\text{kiss}}}}$, and $\Delta {t_{{\text{tumble}}}}$) in the sedimentation process of two particles for different $Gr$.

    $Gr$${t_{{\text{kiss}}}}$/s${t_{{\text{tumble}}}}$/s${t_{{\text{detach}}}}$/s$\Delta {t_{{\text{draft}}}}$/s$\Delta {t_{{\text{kiss}}}}$/s$\Delta {t_{{\text{tumble}}}}$/s
    1000.2750.4890.6890.2750.2140.200
    5000.2570.4680.6690.2570.2110.201
    10000.2390.4440.6470.2390.2050.203
    20000.2140.4130.6230.2140.1990.210
    下载: 导出CSV

    表 3  不同颗粒初始温度时, 两颗粒沉降过程的接触时刻${t_{{\text{kiss}}}}$、翻滚时刻${t_{{\text{tumble}}}}$、分离时刻${t_{{\text{detach}}}}$、拖曳时长$\Delta {t_{{\text{draft}}}}$、接触时长$\Delta {t_{{\text{kiss}}}}$、翻滚时长$\Delta {t_{{\text{tumble}}}}$

    Table 3.  The kissing, tumbling, and detaching moments (${t_{{\text{kiss}}}}$, ${t_{{\text{tumble}}}}$, and ${t_{{\text{detach}}}}$) and the drafting, kissing, and tumbling durations ($\Delta {t_{{\text{draft}}}}$, $\Delta {t_{{\text{kiss}}}}$, and $\Delta {t_{{\text{tumble}}}}$) in the sedimentation process of two particles for different particle’s initial temperatures.

    Case${t_{{\text{kiss}}}}$/s${t_{{\text{tumble}}}}$/s${t_{{\text{detach}}}}$/s$\Delta {t_{{\text{draft}}}}$/s$\Delta {t_{{\text{kiss}}}}$/s$\Delta {t_{{\text{tumble}}}}$/s
    C-C0.2390.4440.6470.2390.2050.203
    C-H0.2580.4690.6690.2580.2110.200
    H-C0.3070.5010.7010.3070.1940.200
    H-H0.3650.7030.9020.3650.3380.199
    下载: 导出CSV
    Baidu
  • [1]

    Yang G C, Jing L, Kwok C Y, Sobral Y D 2019 Comput. Geotech. 114 103100Google Scholar

    [2]

    王尤富 2005 特种油气藏 12 91Google Scholar

    Wang Y F 2005 Special Oil Gas Reservoirs 12 91Google Scholar

    [3]

    Li H Y, Xue H R, Zhang J Y, Zhang G J 2023 Processes 11 2573Google Scholar

    [4]

    Nie D M, Lin J Z 2010 Commun. Comput. Phys. 7 544Google Scholar

    [5]

    Uhlmann M 2005 J. Comput. Phys. 209 448Google Scholar

    [6]

    Fortes A F, Joseph D D, Lundgren T S 1987 J. Fluid Mech. 177 467Google Scholar

    [7]

    Wang Z, Fan J, Luo K 2008 Int. J. Multiphase Flow 34 283Google Scholar

    [8]

    Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 261 95Google Scholar

    [9]

    Wang L, Guo Z, Mi J 2014 Comput. Fluids 96 20Google Scholar

    [10]

    Gan H, Chang J, Feng J J, Hu H H 2003 J. Fluid Mech. 481 385Google Scholar

    [11]

    仝志辉 2010 59 1884Google Scholar

    Tong Z H 2010 Acta Phys. Sin. 59 1884Google Scholar

    [12]

    毛威, 郭照立, 王亮 2013 62 084703Google Scholar

    Mao W, Guo Z L, Wang L 2013 Acta Phys. Sin. 62 084703Google Scholar

    [13]

    刘汉涛, 常建忠, 安康, 苏铁熊 2008 59 1877

    Liu H T, Chang J Z, An K, Su T X 2010 Acta Phys. Sin. 59 1877

    [14]

    Yang B, Chen S, Cao C, Liu Z, Zheng C 2016 Int. J. Heat Mass Transfer 93 477Google Scholar

    [15]

    Ström H, Sasic S 2015 Procedia Eng. 102 1563Google Scholar

    [16]

    Feng Z G, Michaelides E E 2004 J. Comput. Phys. 195 602Google Scholar

    [17]

    Liu J, Huang C, Chai Z, Shi B 2022 Comput. Fluids 233 105240Google Scholar

    [18]

    史冬岩, 王志凯, 张阿漫 2014 63 074703Google Scholar

    Shi D Y, Wang Z K, Zhang A M 2014 Acta Phys. Sin. 63 074703Google Scholar

    [19]

    孙东科, 项楠, 陈科, 倪中华 2013 62 024703Google Scholar

    Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 024703Google Scholar

    [20]

    He X, Chen S, Doolen G D 1998 J. Comput. Phys. 146 282Google Scholar

    [21]

    Zhang X, Wang D, Li Q, Huang R arXiv: 2410.23802 [physics. comp-ph]

    [22]

    Qian Y H, d’Humières D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [23]

    Chai Z, Shi B 2020 Phys. Rev. E 102 023306

    [24]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546Google Scholar

    [25]

    Huang R, Wu H 2016 J. Comput. Phys. 315 65Google Scholar

    [26]

    Huang H, Yang X, Krafczyk M, Lu X Y 2012 J. Fluid Mech. 692 369Google Scholar

    [27]

    Suzuki K, Inamuro T 2011 Comput. Fluids 49 173Google Scholar

    [28]

    Glowinski R, Pan T W, Hesla T I, Joseph D D, Periaux J 2001 J. Comput. Phys. 169 363Google Scholar

  • [1] 王潇, 宋世琦, 平子健, 盛思源, 商宪义, 陈凡秀. 基于micro-CT实验的颗粒体系接触力计算及演化分析.  , doi: 10.7498/aps.74.20241206
    [2] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟.  , doi: 10.7498/aps.73.20231953
    [3] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟.  , doi: 10.7498/aps.72.20230686
    [4] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合.  , doi: 10.7498/aps.71.20211900
    [5] 高效伟, 丁金兴, 刘华雩. 有限线法及其在流固域间耦合传热中的应用.  , doi: 10.7498/aps.71.20220833
    [6] 王国强, 张烁, 杨俊元, 许小可. 耦合不同年龄层接触模式的新冠肺炎传播模型.  , doi: 10.7498/aps.70.20201371
    [7] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解.  , doi: 10.7498/aps.69.20191185
    [8] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型.  , doi: 10.7498/aps.67.20171441
    [9] 陈木凤, 李翔, 牛小东, 李游, Adnan, 山口博司. 两个非磁性颗粒在磁流体中的沉降现象研究.  , doi: 10.7498/aps.66.164703
    [10] 刘汉涛, 江山, 王艳华, 王婵娟, 李海桥. 溶解椭圆颗粒沉降的介观尺度数值模拟.  , doi: 10.7498/aps.64.114401
    [11] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟.  , doi: 10.7498/aps.63.230206
    [12] 毛威, 郭照立, 王亮. 热对流条件下颗粒沉降的格子Boltzmann方法模拟.  , doi: 10.7498/aps.62.084703
    [13] 仝志辉, 刘汉涛, 常建忠, 安康. 双颗粒在溶解条件下沉降的多相流动特性.  , doi: 10.7498/aps.61.024401
    [14] 许双英, 胡林华, 李文欣, 戴松元. 染料敏化太阳电池中TiO2颗粒界面接触对电子输运影响的研究.  , doi: 10.7498/aps.60.116802
    [15] 王龙, 李家春, 周济福. 黏性泥沙絮凝沉降的数值研究.  , doi: 10.7498/aps.59.3315
    [16] 仝志辉. 热对流条件下固液密度比对颗粒沉降运动影响的直接数值模拟.  , doi: 10.7498/aps.59.1884
    [17] 刘汉涛, 常建忠, 安康, 苏铁熊. 热对流条件下双颗粒沉降的直接数值模拟.  , doi: 10.7498/aps.59.1877
    [18] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析.  , doi: 10.7498/aps.58.2523
    [19] 周 倩, 董 鹏, 程丙英. 大尺寸SiO2胶体颗粒的重力沉降自组装研究.  , doi: 10.7498/aps.53.3984
    [20] 孙俊生, 武传松, Y.M.Zhang. 双面电弧焊接的传热模型.  , doi: 10.7498/aps.51.286
计量
  • 文章访问数:  414
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-17
  • 修回日期:  2024-12-22
  • 上网日期:  2024-12-25

/

返回文章
返回
Baidu
map