搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于肋骨为强吸声体的多层介质内非线性声场研究

王浩宇 赖宁磊 晏张平 林伟军 刘晓宙

引用本文:
Citation:

基于肋骨为强吸声体的多层介质内非线性声场研究

王浩宇, 赖宁磊, 晏张平, 林伟军, 刘晓宙

Research on Nonlinear Acoustic Fields in Multi-layer Biological Tissue with Ribs as Strong Acoustic Absorbers

WANG Haoyu, LAI Ninglei, YAN Zhangping, LIN Weijun, LIU Xiaozhou
PDF
HTML
导出引用
  • 在使用高强度聚焦超声(High Intensity Focused Ultrasound)进行肋下病灶治疗的过程中, 肋骨的遮挡显著地影响了治疗的效果, 在先前的研究中, 肋骨通常被视作完美吸声体, 这一模型虽然能够在一定程度上体现肋骨造成的影响, 但也同样可能导致对肋后能量的低估. 为弥补现有工作的不足, 本文提出了一种将肋骨视作强吸声体、而非完美吸声体的数值计算方法, 并使用ABS塑料构建的仿肋模型进行了相关实验以比较两类方法的优劣, 此外本文还在多层介质模型中研究了肋骨对非线性声场造成的影响. 由于肋骨在新模型中具有较大的声衰减系数, 现有算法在计算过程中容易出现数值振荡问题, 为此本研究使用了算子分离法以提高数值计算的稳定性, 并进一步地通过矩阵向量化方法在后向隐式差分格式下实现了声场的稳定求解. 这些改进不仅提高了数值计算的准确性, 还揭示了完美吸声体模型造成的肋后能量低估问题, 对于优化临床治疗策略有重要意义.
    During the treatment of subcostal lesions with high intensity focused ultrasound (HIFU), the obstruction by the ribs significantly affects the therapeutic effect, an impact that can be assessed through numerical calculations. In existing studies, ribs are typically regarded as perfect acoustic absorbers, even this assumption could reveal the impact of the ribs on the acoustic field to some extent, it might still underestimate the energy behind the rib cage. To address the shortcomings of current work, this paper proposes an innovative numerical calculation method refraining from regarding ribs as perfect acoustic absorbers. Subsequently, experiments are conducted using ABS plastic rib cage mimic to compare the effectiveness of the two methods, demonstrating that the method proposed in this paper, which avoids the assumption of considering ribs as perfect acoustic absorbers, could better reveal the impacts caused by ribs, and further studies are carried out on the impact of ribs in a multi-layered medium model. In response to the numerical oscillation issues encountered in existing work when dealing with media with high acoustic attenuation coefficients, this paper employs the operator splitting method to enhance the stability of numerical calculations. Furthermore, to tackle the challenges posed by asymmetric acoustic fields in numerical computations, this paper introduces matrix vectorization techniques and achieves stable solutions for the acoustic field under the backward implicit difference scheme. Additionally, a gradual maximum number of harmonics is employed to reduce the computational load when considering nonlinear effects. These improvements in both the numerical calculation model and the corresponding algorithm not only enhance the precision of numerical computations, but also reveal the underestimation of energy behind the ribs due to the assumption of perfect acoustic absorbers, which is significant for optimizing HIFU treatment strategies.
  • 图 1  椭球系示意图

    Fig. 1.  Illustration of the oblate spheroidal coordinate system.

    图 2  球面波区域与平面波区域划分示意图

    Fig. 2.  Illustration of the division between spherical wave region and plane wave region.

    图 3  生物组织模型示意图 (a) 三维视图; (b) $ xz $截面图

    Fig. 3.  Schematic diagram of the biological tissue model: (a) 3D-view; (b) $ xz $-section.

    图 4  实验环境示意图 (a) 声场扫描系统; (b) ABS塑料仿肋模型

    Fig. 4.  Schematic diagram of the experimental environment: (a) ultrasonic scanning system; (b) rib mimic made of ABS plastic.

    图 5  焦平面内声压峰峰值分布图 (a) $ \mathrm{H_{FS} = 64\; mm} $; (b) $ \mathrm{H_{FS} = 74 \;mm} $; (c) $ \mathrm{H_{FS} = 84 \;mm} $; (d) $ \mathrm{H_{FS} = 94 \;mm} $

    Fig. 5.  Distribution of peak-to-peak pressure in the focal plane: (a) $ \mathrm{H_{FS} = 64\; mm} $; (b) $ \mathrm{H_{FS} = 74\; mm} $; (c) $ \mathrm{H_{FS} = 84\; mm} $; (d) $ \mathrm{H_{FS} = 94\; mm}. $

    图 6  $ \mathrm{H_{FS} = 70\; mm} $时基波振幅沿z轴的分布

    Fig. 6.  Distribution of fundamental amplitude with $ \mathrm{H_{FS} = 70\; mm} $ along the z-axis.

    图 7  $ \mathrm{H_{FS} = 70 \;mm} $时热沉积速率在截面$ \varphi = 0 $内的分布 (a) $ \mathrm{x_c = 0\; mm} $; (b) $ \mathrm{x_c = 5 \;mm} $; (c) $ \mathrm{x_c = 10\; mm} $; (d) $ \mathrm{x_c = 15 \;mm} $

    Fig. 7.  Distribution of heat deposition rate in the $ \varphi = 0 $ plane with $ \mathrm{H_{FS} = 70 \;mm} $: (a) $ \mathrm{x_c = 0 \;mm} $; (b) $ \mathrm{x_c = 5 \;mm} $; (c) $ \mathrm{x_c = 10\; mm} $; (d) $ \mathrm{x_c = 15\; mm} $.

    图 8  $ \mathrm{H_{FS}} $对最大热沉积速率的影响 (a) 完美吸声体模型; (b) 强吸声体模型

    Fig. 8.  Maximum heat deposition rate corresponding to different $ \mathrm{H_{FS}} $: (a) perfect acoustic absorber model; (b) strong acoustic absorber model.

    图 9  测温组织模型 (a) 定制容器; (b) 模型实物

    Fig. 9.  Temperature measurement tissue model: (a) customized container; (b) actual model.

    图 10  焦域的归一化温升随时间的变化情况

    Fig. 10.  Normalized temperature variation in the focal region over time.

    表 1  数值计算中使用的介质声参数

    Table 1.  Acoustic parameters of the medium used in numerical computation.

    $ \rho/\left(\mathrm{kg \cdot m^{-3}} \right) $ $ c/\left(\mathrm{m\cdot s^{-1}} \right) $ $ \alpha/\left(\mathrm{Np\cdot {MHz}^{-\mu} \cdot m^{-1}} \right) $ μ β
    1000 1500 0.025 2 3.5
    脂肪 910 1430 9 1.15 10.5
    肋骨 1450 2300 90 1 0
    肝脏 1050 1596 6.69 1.13 6
    下载: 导出CSV

    表 2  $ \mathrm{H_{FS} = 70 \;mm} $时z轴上的声场参数

    Table 2.  Acoustic field's parameters along the z-axis with $ \mathrm{H_{FS} = 70 \;mm} $.

    $ \mathrm{x_c/mm} $ Field Ref 0 5 10 15
    $ \mathrm{A_1}/p_0 $ 49.09 27.43 27.75 29.07 29.73
    $ \mathrm{A_2}/p_0 $ 26.02 10.21 10.13 10.22 10.26
    $ \mathrm{A_3}/p_0 $ 14.96 3.82 3.71 3.59 3.53
    $ \mathrm{z_1/mm} $ 179.60 180.99 180.90 179.42 179.37
    $ \mathrm{z_2/mm} $ 180.09 180.54 180.36 179.78 179.46
    $ \mathrm{z_3/mm} $ 180.32 180.90 180.68 179.96 179.60
    下载: 导出CSV

    表 3  $ \mathrm{H_{FS} = 70 \;mm} $时平面$ \sigma = 0 $内的声场参数

    Table 3.  Acoustic field's parameters in the $ \sigma = 0 $ plane with $ \mathrm{H_{FS} = 70 \;mm} $.

    $ \mathrm{x_c/mm} $ Field Ref 0 5 10 15
    $ \mathrm{WX_{1, -3 dB}/mm} $ 3.22 3.39 3.21 2.86 2.71
    $ \mathrm{WX_{2, -3 dB}/mm} $ 1.90 1.91 1.83 1.62 1.53
    $ \mathrm{WX_{3, -3 dB}/mm} $ 1.46 1.40 1.36 1.23 1.18
    $ \mathrm{WY_{1, -3 dB}/mm} $ 3.22 3.12 3.13 3.23 3.27
    $ \mathrm{WY_{2, -3 dB}/mm} $ 1.90 1.80 1.80 1.84 1.86
    $ \mathrm{WY_{3, -3 dB}/mm} $ 1.46 1.39 1.39 1.39 1.39
    下载: 导出CSV
    Baidu
  • [1]

    Guang Z L P, Kristensen G, Røder A, Brasso K 2024 Clin. Genitourin. Cancer 22 102101Google Scholar

    [2]

    Schaudinn A, Michaelis J, Franz T, Ho-Thi P, Horn L C, Blana A, Hadaschik B, Stumpp P, Stolzenburg J U, Schlemmer H, Denecke T, Busse H, Ganzer R, Linder N 2021 Eur. J. Radiol 144 109957Google Scholar

    [3]

    蔡忠林, 刘强照, 王朝阳, 李慧, 周逢海 2017 现代肿瘤医学 25 2011Google Scholar

    Cai Z, Liu Q, Wang C, Li H, Zhou F 2017 Mod. Oncol. 25 2011Google Scholar

    [4]

    Zhang P, Xie L, Chen J, Zhan P, Xing H R, Yuan Y 2024 Ultrasound Med. Biol. 50 1381Google Scholar

    [5]

    Fan H J, Cun J P, Zhao W, Huang J Q, Yi G F, Yao R H, Gao B L, Li X H 2018 Int. J. Hyperthermia 35 534Google Scholar

    [6]

    姚一静, 姜立新 2021 声学技术 40 376

    Yao Y, Jiang L 2021 Tech. Acoust. 40 376

    [7]

    Imankulov S B, Fedotovskikh G V, Shaimardanova G M, Yerlan M, Zhampeisov N K 2015 Ultrason. Sonochem. 27 712Google Scholar

    [8]

    Dupré A, Melodelima D, Cilleros C, De Crignis L, Peyrat P, Vincenot J, Rivoire M 2023 IRBM 44 100738Google Scholar

    [9]

    Li J L, Liu X Z, Zhang D, Gong X F 2007 Ultrasound Med. Biol. 33 1413Google Scholar

    [10]

    Lin J, Liu X, Gong X, Ping Z, Wu J 2013 J. Acoust. Soc. Am. 134 1702Google Scholar

    [11]

    Kamakura T, Ishiwata T, Matsuda K 2000 J. Acoust. Soc. Am. 107 3035Google Scholar

    [12]

    Wang X, Lin J, Liu X, Liu J, Gong X 2016 Chin. Phys. B 25 044301Google Scholar

    [13]

    Zhao Y, Gan Y, Long Y, Sun F, Fan X 2024 Appl. Acoust. 216 109740Google Scholar

    [14]

    de Greef M, Schubert G, Wijlemans J W, Koskela J, Bartels L W, Moonen C T W, Ries M 2015 Med. Phys. 42 4685Google Scholar

    [15]

    Liu H L, Chang H, Chen W S, Shih T C, Hsiao J K, Lin W L 2007 Med. Phys. 34 3436Google Scholar

    [16]

    Liu H L, Hsu C L, Huang S M, Hsi Y W 2010 Med. Phys. 37 848Google Scholar

    [17]

    Sapareto S A, Dewey W C 1984 Int. J. Radiat. Oncol. Biol. Phys. 10 787Google Scholar

    [18]

    Cao R, Huang Z, Nabi G, Melzer A 2020 J. Ultrasound Med. 39 883Google Scholar

    [19]

    Khokhlova V A, Souchon R, Tavakkoli J, Sapozhnikov O A, Cathignol D 2001 J. Acoust. Soc. Am. 110 95Google Scholar

    [20]

    Ting-Bo F, Zhen-Bo L, Zhe Z, Dong Z, Xiu-Fen G 2009 Chin. Phys. Lett. 26 084302Google Scholar

    [21]

    Wear K A 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 454Google Scholar

    [22]

    钱盛友, 王鸿樟 2001 50 501Google Scholar

    Qian S Y, Wang H Z 2001 Acta Phys. Sin. 50 501Google Scholar

    [23]

    Khokhlova V, Shmeleva S, Gavrilov L 2010 Acoust. Phys. 56 665Google Scholar

  • [1] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子.  , doi: 10.7498/aps.73.20240554
    [2] 钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩. 基于换能器驱动信号特征的高强度聚焦超声焦域损伤实时监测.  , doi: 10.7498/aps.71.20211443
    [3] 宋人杰, 袁紫燕, 张琪, 于洁, 薛洪惠, 屠娟, 章东. 基于超声RF信号熵分析的声空化时空监测方法.  , doi: 10.7498/aps.71.20220558
    [4] 刘备, 胡伟鹏, 邹孝, 丁亚军, 钱盛友. 基于变分模态分解与多尺度排列熵的生物组织变性识别.  , doi: 10.7498/aps.68.20181772
    [5] 郭各朴, 宿慧丹, 丁鹤平, 马青玉. 基于电阻抗层析成像的高强度聚焦超声温度监测技术.  , doi: 10.7498/aps.66.164301
    [6] 杜红秀, 魏宏, 秦义校, 李中华, 王同尊. 轴对称构件受力分析的插值粒子法.  , doi: 10.7498/aps.64.100204
    [7] 耿昊, 范庭波, 张喆, 屠娟, 郭霞生, 李发琪, 章东. 球形集声器在生物组织中形成的组织损伤.  , doi: 10.7498/aps.63.044301
    [8] 赵维谦, 唐芳, 邱丽荣, 刘大礼. 轴对称矢量光束聚焦特性研究现状及其应用.  , doi: 10.7498/aps.62.054201
    [9] 孙健明, 于洁, 郭霞生, 章东. 基于分数导数研究高强度聚焦超声的非线性声场.  , doi: 10.7498/aps.62.054301
    [10] 张国亭, 黄俊杰, 阿拉坦仓. 弹性理论中一类算子矩阵的本征向量展开定理及应用.  , doi: 10.7498/aps.61.140205
    [11] 徐丰, 陆明珠, 万明习, 方飞. 256阵元高强度聚焦超声相控阵系统误差与多焦点模式精确控制.  , doi: 10.7498/aps.59.1349
    [12] 刘 军, 陈晓伟, 刘建胜, 冷雨欣, 朱 毅, 戴 君, 李儒新, 徐至展. 负啁啾高强度飞秒脉冲在正常色散材料中传输特性研究.  , doi: 10.7498/aps.55.1821
    [13] 李俊伦, 刘晓宙, 章 东, 龚秀芬. 条状障碍物对超声非线性声场的影响研究.  , doi: 10.7498/aps.55.2809
    [14] 陈晓伟, 刘 军, 朱 毅, 冷雨欣, 葛晓春, 李儒新, 徐至展. 高强度飞秒激光脉冲在空气中的自压缩.  , doi: 10.7498/aps.54.3665
    [15] 张解放, 徐昌智, 何宝钢. 变量分离法与变系数非线性薛定谔方程的求解探索.  , doi: 10.7498/aps.53.3652
    [16] 陆明珠, 万明习, 施雨, 宋延淳. 多阵元高强度聚焦超声多目标控制方法研究.  , doi: 10.7498/aps.51.928
    [17] 陈黎丽. 形式变量分离法及一般Hirota-Satsuma方程新的精确解.  , doi: 10.7498/aps.48.2149
    [18] 李先枢, 高燕球, 陈志恬, 冯镇业. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅱ)——轴对称稳定光学无源谐振腔的计算.  , doi: 10.7498/aps.32.1002
    [19] 许政一, 张安东, 徐刚, 杨华光, 李荫远. α-LiIO3单晶中离子输运引起的高强度准弹性光散射.  , doi: 10.7498/aps.31.615
    [20] 黄田森. 关于非轴对称原子核的转动惯量.  , doi: 10.7498/aps.21.231
计量
  • 文章访问数:  380
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-02

/

返回文章
返回
Baidu
map