搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面与缺陷调控型大功率压电超声换能器

林基艳 李耀 陈诚 刘卫东 林书玉 郭林伟 徐洁

引用本文:
Citation:

表面与缺陷调控型大功率压电超声换能器

林基艳, 李耀, 陈诚, 刘卫东, 林书玉, 郭林伟, 徐洁

Research on surface and defect controlled high power piezoelectric ultrasonic transducers

LIN Jiyan, LI Yao, CHEN Cheng, LIU Weidong, LIN Shuyu, GUO Linwei, XU Jie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在大功率压电超声换能器中设计合理的声子晶体缺陷结构, 可以实现对杂散振动模态的有效抑制. 但当换能器尺寸较大时, 声子晶体缺陷结构对换能器设备辐射面的位移振幅改善情况仍不理想. 如何既能有效抑制有害振动, 又能保证换能器的工作效率, 提高换能器辐射面的位移振幅, 一直都是功率超声领域亟待解决的难题. 研究发现, 声学表面结构可以实现能量的单向传输, 更好地降低能量损耗, 提高能量传输的效率. 基于此, 本文提出了表面与缺陷调控型大功率压电超声换能器的研究. 通过在换能器中设计合理的缺陷和声表面结构, 激发声波的强局域化效应, 实现声学反常透射, 大幅提高换能器纵向辐射声功率. 同时利用数据分析技术, 对声学表面结构和缺陷结构的材料成分、几何结构参数对换能器性能的影响进行分析, 建立大功率压电超声换能器的性能预测模型, 实现换能器的优化设计. 从定量研究的角度出发, 系统性地提出一种大功率压电超声换能器优化设计的新理论和新方法. 仿真和实验证明, 本研究可以提高大功率压电超声换能器的创新设计能力和设计的智能化水平, 使得换能器在大功率应用环境中振动模态更加单一, 大幅提高了辐射面的位移振幅和振幅分布均匀度.
    Researches have shown that a reasonably designed phononic crystal defect structure in high-power piezoelectric ultrasonic transducers can effectively suppress stray vibration modes. However, when the size of the transducer is large, the improvement of the displacement amplitude of the radiation surface of the transducer device by the phononic crystal defect structure is still not so ideal. How to effectively suppress harmful vibrations while ensuring the operational efficiency of transducers and enhancing the displacement amplitude of their radiating surfaces has always been a challenging problem in the field of power ultrasonics that needs to be solved urgently. Researches have found that acoustic surface structures can achieve unidirectional energy transmission, effectively reduce energy loss, and enhance the efficiency of energy transmission. Based on this, the high-power piezoelectric ultrasonic transducers with surface and defect regulation are investigated in this work.By designing reasonable defects and acoustic surface structures in the transducer, strong localization effects of sound waves can be excited to achieve acoustic anomalous transmission, significantly increasing the longitudinal radiated sound power of the transducer. At the same time, a data analysis technique is used to analyze the influence of material composition and geometric parameters of acoustic surface structure and defect structure on the performance of transducers, and a performance prediction model is established for high-power piezoelectric ultrasonic transducers, ultimately achieving optimized design of transducers. In this study. a new theory and method are systematically proposed for optimizing the design of high-power piezoelectric ultrasonic transducers quantitatively. Simulation and experimental results show that the innovative design capability and intelligent level of high-power piezoelectric ultrasonic transducers can be improved, making the vibration mode of the transducer more singular in high-power application environments, and thus significantly improving the displacement amplitude and amplitude distribution uniformity of the transducer radiation surface.
  • 图 1  大功率压电超声换能器的结构和振型图 (a) 结构图; (b)振型图; (c) 辐射面位移分布图

    Fig. 1.  Structure and vibration mode diagram of high-power piezoelectric ultrasonic transducer: (a) Structural diagram; (b) vibration mode diagram; (c) displacement distribution diagram of radiation surface.

    图 2  未优化换能器的辐射面位移振幅

    Fig. 2.  Radiation surface displacement amplitude of unoptimized transducer.

    图 3  优化后的后盖板的结构示意图

    Fig. 3.  Structural schematic diagram of optimized rear cover plate.

    图 4  优化后的前盖板的结构示意图

    Fig. 4.  Structural schematic diagram of optimized front cover plate.

    图 5  优化后的前盖板的结构示意图(俯视图)

    Fig. 5.  Structural schematic diagram of optimized front cover plate (top view).

    图 6  优化后的前盖板的结构示意图(侧视图)

    Fig. 6.  Structural schematic diagram of optimized front cover plate (side view).

    图 7  表面与缺陷调控型大功率压电超声换能器的结构模型图和振型图 (a) 换能器结构模型图; (b)振型图

    Fig. 7.  Structural model diagram and vibration mode diagram of surface and defect controlled high-power piezoelectric ultrasonic transducer: (a) Structural model diagram of transducer; (b) vibration mode diagram.

    图 8  优化后的换能器和未优化的换能器的辐射面位移振幅对比图

    Fig. 8.  Comparison of displacement amplitude of radiation surface between optimized and unoptimized transducers.

    图 9  三种换能器性能对比图 (a) 辐射面位移振幅和分布均匀度对比图; (b) 总辐射功率对比图

    Fig. 9.  Comparison chart of three types of transducer performance: (a) Comparison diagram of displacement amplitude and distribution uniformity of radiation surface; (b) comparison chart of total radiated power.

    图 10  不同的属性参数对纵向谐振频率f的影响.

    Fig. 10.  Influences of different attributes parameters on the longitudinal resonance frequency f.

    图 12  不同的属性参数对辐射面位移振幅分布Du的影响

    Fig. 12.  Influences of different attribute parameters on the amplitude distribution Du of radiation surface displacement.

    图 13  纵向谐振频率f的仿真值和预测值的对比及相对误差

    Fig. 13.  Comparison and relative error between simulated and predicted values of longitudinal resonant frequency f.

    图 15  辐射面位移振幅分布Du的仿真值和预测值的对比及相对误差

    Fig. 15.  Comparison and relative error between simulated and predicted values of Du.

    图 11  不同的属性参数对辐射面位移振幅平均值Aave的影响

    Fig. 11.  Influences of different attribute parameters on the average displacement amplitude Aave of the radiation surface.

    图 14  辐射面位移振幅平均值Aave的对比及相对误差

    Fig. 14.  Comparison and relative error of average amplitude Aave of radiation surface displacement.

    图 16  换能器实物图

    Fig. 16.  Physical images of transducers.

    图 17  精密阻抗分析仪的测量图.

    Fig. 17.  Measurement diagram of precision impedance analyzer.

    图 18  输入电阻抗与谐振频率的测量 (a) 未优化的换能器的测量结果; (b) 表面与缺陷调控型换能器的测量结果; (c) 未优化的换能器的仿真导纳曲线图; (d)表面与缺陷调控型换能器的仿真导纳曲线图

    Fig. 18.  Measurement of input impedance and resonant frequency: (a) Measurement results of an unoptimized transducer; (b) measurement results of surface and defect controlled transducers; (c) simulation admittance curve of unoptimized transducer; (d) simulation admittance curve of surface and defect controlled transducers.

    图 19  换能器辐射面位移振幅分布的实验测量 (a) 测量过程; (b) 测量得到的未优化换能器的表面数据; (c) 测量得到的优化后的换能器的表面数据

    Fig. 19.  Experimental measurement of displacement amplitude distribution of transducer radiation surface: (a) Measurement process; (b) surface data of unoptimized transducers obtained through measurement; (c) the surface data of the optimized transducer obtained through measurement.

    表 1  压电超声换能器的材料和几何结构参数

    Table 1.  Materials and geometric structure parameters of piezoelectric ultrasonic transducer.

    部件材料属性形状半径/mm半径/mm高/mm
    后盖板AISI 4340 钢等截面圆柱313130
    压电陶瓷圆环(两片)PZT-4压电陶瓷等截面圆环7(内径)30(外径)8
    前盖板6063-T83铝圆台31(上底)50(下底)35
    下载: 导出CSV

    表 2  三种换能器性能对比表

    Table 2.  Performance comparison table of three transducers.

    换能器位移振幅Aave/mm分布均匀度Du
    /%
    总辐射功率
    /mW
    缺陷结构0.2180 × 10–387.730.04818
    管柱结构0.2109 × 10–390.560.04904
    表面与缺陷结构0.3015 × 10–393.560.1181
    比值(表面与缺陷/缺陷)1.3841.0662.450
    比值(表面与缺陷/管柱)1.4301.0332.407
    下载: 导出CSV

    表 3  纵向谐振频率f的预测模型(单位Hz)

    Table 3.  Predictive model for longitudinal resonant frequency f of slot structures (Unit: Hz).

    ABCD
    后盖板表面凹槽厚度w/mm19015.4851.544–0.090650.004986
    楔形体孔的宽度w1 /mm19003.33313.94–0.4575–0.02117
    正常散射体空气圆柱孔半径r8/mm21299.902–36.520.000–50.71
    空气圆柱孔的高度h4/mm20530.792–202.58.669–0.1261
    环状体槽的内半径r7/mm19015.0832.11611.493.530
    下载: 导出CSV

    表 4  辐射面位移振幅平均值Aave的预测模型

    Table 4.  Prediction model for the average displacement amplitude Aave of the radiation surface.

    ABCD
    后盖板表面凹槽厚度w/ mm0.00029396.991×10–60.0000.000
    楔形体孔的宽度w1/mm3.048×10–4–2.717×10–63.576×10–70.000
    正常散射体空气圆柱孔半径r8/mm6.102×10–4–1.155×10–40.0002.187×10–6
    空气圆柱孔的高度h4/mm3.063×10–4–2.397×10–61.375×10–71.373×10–10
    环状体槽的内半径r7/mm3.005×10–4–4.852×10–62.407×10–5–6.396×10–6
    下载: 导出CSV

    表 5  辐射面位移振幅分布均匀度Du的预测模型

    Table 5.  Prediction model for the uniformity of displacement amplitude distribution Du on the radiation surface.

    ABCD
    后盖板表面凹槽厚度w/mm0.9355–0.00044413.130×10–54.060×10–7
    楔形体孔的宽度w1/mm0.9798–0.041390.003935–0.0003165
    正常散射体空气圆柱孔半径r8/mm–0.36220.48340.000–0.009487
    空气圆柱孔的高度h4/mm0.5726–0.0044060.003738–0.0001257
    环状体槽的内半径r7/mm0.9600–0.10100.05795–0.01953
    下载: 导出CSV
    Baidu
  • [1]

    Lin S Y 2004 J. Acoust. Soc. Am. 115 182Google Scholar

    [2]

    Liu S Q, Yao Y 2008 J. Mecha. Engi. 44 239

    [3]

    Chen C, Dong Y L, Wang S, Hu L Q, Lin S Y 2022 J. Acoust. Soc. Am. 151 2712Google Scholar

    [4]

    许龙, 王威震, 龚涛, 李果, 赵伦, 周光平, 梁召峰 2024 振动与冲击 43 287

    Xu L, Wang W Z, Gong T, Li G, Zhao L, Zhou G P, Liang Z F 2024 J. Vibration Shock 43 287

    [5]

    Wu Z Z, Zhang Z, Wu D G, Chen Y H, Hu F, Guo C X, Tang L J 2024 Actuators 13 177Google Scholar

    [6]

    Wang S, Lin S Y 2021 Ultrasonics 111 106299Google Scholar

    [7]

    He Z J, Jia H, Qiu C Y, Peng S S, Mei X F, Cai F Y, Peng P, Ke Manzhu Liu Z Y. 2010 Phys. Revi. Lett. 105 074301Google Scholar

    [8]

    Christensen J, Fernandez-Dominguez A I, De Leon-Perez F, Martin-Moreno L, Garcia-Vidal F J 2007 Nat. Phys. 3 851Google Scholar

    [9]

    冯俊瑾 2023 博士学位论文 (成都: 电子科技大学)

    Feng J J 2023 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [10]

    Zhou Y, Lu M H, Liang F, Xu N, Chen Y F, Zhu Y Y, Zhu S N, Ming N B 2010 Phys. Revi. Lett. 104 164301Google Scholar

    [11]

    Liu F., Cai F., Ding, Y., Liu Z. 2008 Appl. Phys. Lett. 92 103504Google Scholar

    [12]

    卢一铭, 曹东兴, 申永军, 陈许敏 2021 力学学报 53 1114Google Scholar

    Lu Y M, Cao D X, Shen Y J, Chen X M 2021 Chin. J. Theo. Appl. Mech. 53 1114Google Scholar

    [13]

    孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江 2019 68 234206Google Scholar

    Sun W B, Wang T, Sun X W, Kang T F, Tan Z H, Liu Z J 2019 Acta Phys. Sin. 68 234206Google Scholar

    [14]

    朱兴一, 钟盛, 叶安珂, 邓富文, 吴睿, 俞悟周 2014 人工晶体学报 43 2852Google Scholar

    Sun W B, Wang T, Sun X W, Kang T F, Tan Z H, Liu Z J 2014 J. Synt. Crys. 43 2852Google Scholar

    [15]

    侯丽娜, 侯志林, 傅秀军 2014 63 034305Google Scholar

    Hou L N, Hou Z L, Fu X J 2014 Acta Phys. Sin. 63 034305Google Scholar

    [16]

    高东宝, 曾新吾 2014 国防科技大学学报 35 129

    Gao D B, Zeng X W J 2013 J. Nati. Univ. Defen. Tech. 35 129

    [17]

    林基艳, 林书玉, 徐洁, 王升, 钟兴华 2023 中国科学: 物理学 力学 天文学 53 254311Google Scholar

    Lin J Y, Lin S Y, Xu J, Wang S, Zhong X H 2023 Sci. Sin. Phys. Mech. As. 53 254311Google Scholar

    [18]

    林基艳, 林书玉 2023 72 094301Google Scholar

    Lin J Y, Lin S Y 2023 Acta Phys. Sin. 72 094301Google Scholar

    [19]

    孙琢刚 2023 博士学位论文 (秦皇岛市: 燕山大学)

    Sun Z G 2023 Ph. D. Dissertation (Qinhuangdao: Yanshan University

    [20]

    刘婷 2022 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Liu T 2022 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [21]

    李雪锋 2011 硕士学位论文 (南京: 南京大学)

    Li X F 2011 M. S. Thesis (Nanjing: Nanjing University

    [22]

    张蒙 2019 硕士学位论文 (沈阳: 沈阳航空航天大学)

    Zhang M 2019 M. S. Thesis (Shenyang: Shenyang University of Aeronautics and Astronautics

    [23]

    郭梦萍 2019 硕士学位论文 (南京: 南京理工大学)

    Guo M P 2019 M. S. Thesis (Nanjing: Nanjing University of Science and Technology

    [24]

    谢素君 2017 硕士学位论文 (吉首: 吉首大学)

    Xie S J 2017 M. S. Thesis (Jishou: Jishou University

    [25]

    毛宇宸, 沈建东, 刘涛, 杨嘉倩, 豆涵杰, 张汪洋, 牟笑静 2024 压电与声光 46 617

    Mao Y C, Shen J D, Liu T, Yang J Q, Dou H J, Zhang W Y, Mou X J 2024 Piez. & Acous. 46 617

    [26]

    郭万里 2022 硕士学位论文 (天津: 河北工业大学)

    Guo W L 2022 M. S. Thesis (Tianjin: Hebei University of Technology

  • [1] 王怡, 陈诚, 林书玉. 声黑洞楔形结构振动模式转换超声换能器.  , doi: 10.7498/aps.74.20241326
    [2] 高裕昆, 赵洁, 周晶晶, 周静. 压电纤维复合材料智能传感器的有限元预测与器件性能.  , doi: 10.7498/aps.74.20241379
    [3] 林基艳, 陈诚, 郭林伟, 李耀, 林书玉, 孙姣夏, 徐洁. 声表面和拓扑缺陷结构对换能器耦合振动系统的声波调控.  , doi: 10.7498/aps.73.20241199
    [4] 林基艳, 林书玉. 管柱型近周期声子晶体点缺陷结构的大尺寸压电超声换能器.  , doi: 10.7498/aps.72.20230195
    [5] 段志强, 裴小龙, 郭庆伟, 侯华, 赵宇宏. 多模态混合输入模拟实验过程实现新型Al-Si-Mg系合金设计.  , doi: 10.7498/aps.72.20221736
    [6] 安志鸿, 黄林敏, 赵锦波, 胡倩倩, 孙转兰, 郑欢, 张晓青. 面向空耦电声换能器应用的高性能FEP/PTFE复合膜压电驻极体.  , doi: 10.7498/aps.71.20211609
    [7] 安志鸿, 黄林敏, 赵锦波, 胡倩倩, 孙转兰, 郑欢, 张晓青. 面向空耦电声换能器应用的高性能FEP/PTFE复合膜压电驻极体.  , doi: 10.7498/aps.70.20211609
    [8] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应.  , doi: 10.7498/aps.68.20190817
    [9] 曾伟, 王海涛, 田贵云, 胡国星, 汪文. 研究激光激发的声表面波与材料近表面缺陷的振荡效应.  , doi: 10.7498/aps.64.134302
    [10] 王光强, 王建国, 李爽, 王雪锋, 陆希成, 宋志敏. 0.34 THz大功率过模表面波振荡器研究.  , doi: 10.7498/aps.64.050703
    [11] 侯丽娜, 侯志林, 傅秀军. 局域共振型声子晶体中的缺陷态研究.  , doi: 10.7498/aps.63.034305
    [12] 高向东, 龙观富, 汪润林, Katayama Seiji. 大功率盘形激光焊飞溅特征分析.  , doi: 10.7498/aps.61.098103
    [13] 赖剑强, 魏彦玉, 许雄, 沈飞, 刘洋, 刘漾, 黄民智, 唐涛, 宫玉彬. 140GHz大功率交错双栅行波管的设计和模拟研究.  , doi: 10.7498/aps.61.178501
    [14] 董雅娟, 张俊兵, 陈海涛, 曾祥华. 大功率全方位反射镜发光二极管性能研究.  , doi: 10.7498/aps.60.077803
    [15] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应.  , doi: 10.7498/aps.57.7765
    [16] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究.  , doi: 10.7498/aps.57.472
    [17] 付生辉, 宋国峰, 陈良惠. 大功率分布反馈激光器中光栅优化及试验.  , doi: 10.7498/aps.56.1613
    [18] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响.  , doi: 10.7498/aps.56.6003
    [19] 庞根弟, 蔡建华. 非均匀无序系统的声子局域化.  , doi: 10.7498/aps.37.688
    [20] 严仁博. 超声楔形换能器的体波和瑞利表面波指向性图案.  , doi: 10.7498/aps.23.41
计量
  • 文章访问数:  29
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-12
  • 修回日期:  2025-02-19
  • 上网日期:  2025-04-18

/

返回文章
返回
Baidu
map