搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge20Se80–xTex 玻璃网络结构演变及理论带隙-玻璃性能评价

夏克伦 管永年 顾杰荣 贾光 仵苗苗 沈祥 刘自军

引用本文:
Citation:

Ge20Se80–xTex 玻璃网络结构演变及理论带隙-玻璃性能评价

夏克伦, 管永年, 顾杰荣, 贾光, 仵苗苗, 沈祥, 刘自军

Structural evolution of Ge20Se80–xTex glass networks and assessment of glass properties by theoretical bandgap

Xia Ke-Lun, Guan Yong-Nian, Gu Jie-Rong, Jia Guang, Wu Miao-Miao, Shen Xiang, Liu Zi-Jun
PDF
HTML
导出引用
  • 开发特殊性能红外材料是目前提升红外光学系统性能的关键, 硫系玻璃作为组分-性能可调的红外材料无疑成为了热门选项. Se基与Te基玻璃涵盖中波、长波红外窗口, 是最典型的红外器件应用材料之一, 通过对Ge20Se80–xTex玻璃体系的结构与性能分析, 阐述了Te含量对该玻璃体系结构与性能演变的规律. 随着Te含量的增大, 玻璃转变温度(Tg)受网络结构及平均键能的影响先升高后降低, 密度与折射率近似线性的梯度增高, 阿贝数逐渐增大, 而维氏硬度几乎不随Te含量的变化而变化, 断裂韧性随Te含量的增大而降低. 针对平均配位数无法评价两种及以上同族元素组成的玻璃体系问题, 成功建立了理论带隙-玻璃性能评价体系, 并对Ge20Se80–xTex玻璃体系的密度、折射率、阿贝数、断裂韧性等参数与理论带隙建立了函数关系, 该体系可用于快速评估玻璃组分与性能.
    Infrared imaging systems are being updated towards greater performance as well as lighter and smaller devices. Developing infrared materials with special properties is a critical for enhancing the performance of optical systems as well as miniaturizing devices. Chalcogenide glass becomes a popular option for advanced IR materials due to its component-property tunability. Se—based glasses such as Ge33As12Se55, Ge10As40Se50, and As40Se60, which completely cover the mid- and long-wave infrared windows, are the most typical materials used in infrared equipment. However, these classical materials can no longer meet the requirements of high-performance imaging systems, and adding more elements such as Te, Ga, Sb, and Ag to enhance the performance is a reliable way to solve this problem. By analysing the structure and properties of the Ge20Se80–xTex glass system, the law of its structure and properties evolving with Te content is illustrated. The obtained typical results are shown below. With the increase of Te content, the glass transition temperature (Tg) increases and then decreases, which is caused by the network structure and the average bond energy; the density and refractive index increase in an approximately linear gradient; the Abbe number gradually increases, while the Vickers hardness hardly changes with Te content; the fracture toughness decreases with the Te content increasing. Aiming at the problem that the average coordination number is unable to evaluate the glass systems composed of two or more elements from the same main group, a theoretical bandgap-glass property evaluation system is successfully established. The functional relationships among parameters such as density, refractive index, Abbe number, and fracture toughness, and theoretical band gap are established for Ge20Se80–xTex glass system as shown in the summary figure, which can be used to rapidly evaluate the glass components and properties.
      通信作者: 刘自军, liuzijun@nbu.edu.cn
    • 基金项目: 国家自然科学基金区域创新发展联合基金项目(批准号: U21A2056)和国家自然科学基金(批准号: 61975086, 62075110)资助的课题.
      Corresponding author: Liu Zi-Jun, liuzijun@nbu.edu.cn
    • Funds: Project supported by the Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China (Grant No. U21A2056) and the National Natural Science Foundation of China (Grant Nos. 61975086, 62075110).
    [1]

    Adam J L, Zhang X H 2014 Chalcogenide Glasses (Sawston Cambridge: Woodhead Publishing) pxvii

    [2]

    Maurugeon S, Boussard-Pledel C, Troles J, Faber A J, Lucas P, Zhang X H, Lucas J, Bureau B 2010 J. Lightwave Technol. 28 3358

    [3]

    Calvez L, Ma H L, Lucas J, Zhang X H 2007 Adv. Mater. 19 129Google Scholar

    [4]

    Mi H T, Yang A P, Huang Z X, Tian K Z, Li Y B, Ma C, Liu Z J, Shen X, Yang Z Y 2023 Acta Phys. Sin. 72 047101 [米浩婷, 杨安平, 黄梓轩, 田康振, 李跃兵, 马成, 刘自军, 沈祥, 杨志勇 2023 72 047101]Google Scholar

    Mi H T, Yang A P, Huang Z X, Tian K Z, Li Y B, Ma C, Liu Z J, Shen X, Yang Z Y 2023 Acta Phys. Sin. 72 047101Google Scholar

    [5]

    Wang Y W, Qi S S, Yang Z Y, Wang R P, Yang A P, Lucas P 2017 J. Non-Cryst. Solids 459 88Google Scholar

    [6]

    Carlie N A 2015 Int. J. Appl. Glass Sci. 6 364Google Scholar

    [7]

    Lonergan J, Lonergan C, McCloy J, Richardson K A 2019 J. Non-Cryst. Solids 510 192Google Scholar

    [8]

    Yang G, Gueguen Y, Sangleboeuf J-C, Rouxel T, Boussard-Plédel C, Troles J, Lucas P, Bureau B 2013 J. Non-Cryst. Solids 377 54Google Scholar

    [9]

    Wang T, Wei W H, Shen X, Wang R P, Davies B L, Jackson I 2013 J. Phys. D: Appl. Phys. 46 165302Google Scholar

    [10]

    Wang R P, Wang T, Choi D Y, Madden S, Luther-Davies B 2011 AIP Conf. Proc. 1393 34

    [11]

    Xu S W, Liang T, Zhu X Y 2023 Chalcogenide Lett. 20 55Google Scholar

    [12]

    Xu S W, Wang X S, Shen X 2024 Acta Phys. Sin. 73 057102 [许思维, 王训四, 沈祥 2024 73 057102]Google Scholar

    Xu S W, Wang X S, Shen X 2024 Acta Phys. Sin. 73 057102Google Scholar

    [13]

    Phillips J C 1979 J. Non-Cryst. Solids 34 153Google Scholar

    [14]

    Xia F, Baccaro S, Wang H, Hua W, Zeng H D, Zhang X H, Chen G R 2008 J. Non-Cryst. Solids 354 1365Google Scholar

    [15]

    Opletal G, Wang R P, Russo S P 2013 Phys. Chem. Chem. Phys. 15 4582Google Scholar

    [16]

    Tichý L, Tichá H 1995 J. Non-Cryst. Solids 189 141Google Scholar

    [17]

    Xia F, Baccaro S, Zhao D, Falconieri M, Chen G 2005 Nucl. Instrum. Methods Phys. Res. B 234 525Google Scholar

    [18]

    Sharma E, Sharma R, Sharma V, Sharma P 2018 AIP Conf. Proc. 2050 020008

    [19]

    Zha C, Wang R, Smith A, Prasad A, Jarvis R A, Luther-Davies B 2007 J. Mater. Sci-Mater. El. 18 389Google Scholar

    [20]

    Arsova D 1996 J. Phys. Chem. Solids 57 1279Google Scholar

    [21]

    Fouad S S 1999 Vacuum 52 505Google Scholar

    [22]

    Cheng C, Wang X S, Xu T F, Sun L H, Pan Z H, Liu S, Zhu Q D, Liao F X, Nie Q H, Dai S X, Shen X H, Zhang X H, Chen W 2016 Infrared Phys. Techn. 76 698Google Scholar

    [23]

    Abd El-Rahman A A, Eid A, Sanad M, El-Ocker R 1998 J. Phys. Chem. Solids 59 825Google Scholar

    [24]

    Sharma P, Katyal S C 2008 J. Non-Cryst. Solids 354 3836Google Scholar

    [25]

    Gonçalves C, Mereau R, Nazabal V, Boussard-Pledel C, Roiland C, Furet E, Deschamps M, Bureau B, Dussauze M 2021 J. Solid State Chem. 297 122062Google Scholar

    [26]

    Hassanien A S, Sharma I, Akl A A 2020 J. Non-Cryst. Solids 531 119853Google Scholar

    [27]

    Knotek P, Kutalek P, Cernoskova E, Vlcek M, Tichy L 2020 RSC Adv. 10 42744Google Scholar

  • 图 1  (a) Ge20Se80–xTex系列玻璃直接带隙对应的(αhν)2之间的关系, 以及每种玻璃的光学带隙值; (b) 理论带隙、光学带隙与Te含量的变化关系

    Fig. 1.  (a) The relationship between (αhν)2 and corresponding to the direct band gap of Ge20Se80–xTex series glasses, and the optical band gap value of each glass; (b) the relationship between the theoretical bandgap, the optical bandgap and the Te content.

    图 2  (a) Ge20Se80–xTex系列玻璃归一化拉曼光谱; (b) Ge20Se50Te30玻璃拉曼光谱曲线拟合

    Fig. 2.  (a) Normalised Raman spectra of Ge20Se80–xTex series glasses; (b) Raman spectral curve fitting of Ge20Se50Te30 glasses.

    图 3  Ge20Se80–xTex系列玻璃的Tg随Te含量的变化

    Fig. 3.  The relationship between the Tg of Ge20Se80–xTex series glass and the Te content.

    图 4  Ge20Se80–xTex系列玻璃的密度(a)、折射率@10 μm (b)、以及8—12 μm窗口的阿贝数 (c)与Te含量的变化关系; Ge20Se80–xTex系列玻璃的密度(d)、折射率@10 μm(e)、以及8—12 μm窗口的阿贝数(f)与理论带隙$ E_{\text{g}}^{{\text{th}}} $的变化关系及其拟合曲线

    Fig. 4.  Variation of density (a), refractive index @10 μm (b), and Abbe number (c) for the 8–12 μm window versus Te content for Ge20Se80–xTex series glasses; variation of density (d), refractive index @10 μm (e), and Abbe number (f) for the 8–12 μm window versus the theoretical bandgap $ E_{\text{g}}^{{\text{th}}} $and their fitting curves for the Ge20Se80–xTex series glasses.

    图 5  Ge20Se80–xTex系列玻璃的维氏硬度(a)、断裂韧性(b)与Te含量的变化关系; Ge20Se80–xTex系列玻璃的维氏硬度(d)、断裂韧性(e)与理论带隙$ E_{\text{g}}^{{\text{th}}} $的变化关系及其拟合曲线

    Fig. 5.  Variation of Vickers hardness (a) and fracture toughness (b) versus Te content for the Ge20Se80–xTex series of glasses; variation of Vickers hardness (d) and fracture toughness (e) versus the theoretical bandgap $ E_{\text{g}}^{{\text{th}}} $, and their fitted curves for the Ge20Se80–xTex series of glasses.

    表 1  Ge, Se, Te元素的基本特性参数

    Table 1.  The basic characteristic parameters of Ge, Se, and Te elements.

    元素 配位数 密度/(g·cm–3) 摩尔质量/(g·mol–1) 摩尔体积/(cm3·mol–1) 电负性Pauling scale 带隙/eV 键能/(kcal·mol–1)
    Ge 4 5.33 72.63 13.63 2.01 0.67 37.78
    Se 2 4.81 78.97 16.42 2.55 1.95 44.04
    Te 2 6.22 127.6 20.50 2.10 0.33 33.00
    下载: 导出CSV

    表 2  Ge20Se80–xTex的玻璃可能出现的共价键及其键能

    Table 2.  Possible bond types and bond energies for Ge20Se80–xTex glass.

    成键类型Ge—SeSe—TeSe—SeGe—TeTe—Te
    键能/(kcal·mol–1)49.5444.2044.0435.5533.00
    下载: 导出CSV

    表 3  Ge20Se80–xTex系列玻璃可能出现的振动模式及其频率位置

    Table 3.  Possible vibration modes and frequency positions of Ge20Se80–xTex series glasses.

    Wavenumber/cm–1 Vibrational mode
    145 ν (Te)—Te–Te—(Te)
    151 νas (Ge)—Te—Te—Te—(Ge)
    154 νs (Ge)—Te—Te—Te—(Ge)
    157 ν (Ge)—Te—Te—(Te)
    164 ν (Ge)—Te—Te—(Ge)
    145 ν Ge—Se1/2Te3/2
    160 ν Ge—Se2/2Te2/2
    170 ν Ge—Se3/2Te1/2
    194 νs Corner-Sharing Ge—Se4/2
    211 νs Edge-sharing Ge—Se4/2
    299 νas Ge—Se4/2
    208 νas (Ge)—Te—Se—Te—(Ge)
    210 ν (Se)-Se—Te—(Ge)
    211 νs (Ge)—Te—Se—Te—(Ge)
    212 νas (Ge)-Se—Te—Se—(Ge)
    219 νs (Te)—Te—Se—(Ge)
    222 νs (Ge)-Se—Te—Se—(Ge)
    245 ν -(Se—Se)n- long chain
    252 νas Se—Se—Se
    263 ν (Se)-Se—Se—(Ge)
    270 ν Se—Se
    下载: 导出CSV
    Baidu
  • [1]

    Adam J L, Zhang X H 2014 Chalcogenide Glasses (Sawston Cambridge: Woodhead Publishing) pxvii

    [2]

    Maurugeon S, Boussard-Pledel C, Troles J, Faber A J, Lucas P, Zhang X H, Lucas J, Bureau B 2010 J. Lightwave Technol. 28 3358

    [3]

    Calvez L, Ma H L, Lucas J, Zhang X H 2007 Adv. Mater. 19 129Google Scholar

    [4]

    Mi H T, Yang A P, Huang Z X, Tian K Z, Li Y B, Ma C, Liu Z J, Shen X, Yang Z Y 2023 Acta Phys. Sin. 72 047101 [米浩婷, 杨安平, 黄梓轩, 田康振, 李跃兵, 马成, 刘自军, 沈祥, 杨志勇 2023 72 047101]Google Scholar

    Mi H T, Yang A P, Huang Z X, Tian K Z, Li Y B, Ma C, Liu Z J, Shen X, Yang Z Y 2023 Acta Phys. Sin. 72 047101Google Scholar

    [5]

    Wang Y W, Qi S S, Yang Z Y, Wang R P, Yang A P, Lucas P 2017 J. Non-Cryst. Solids 459 88Google Scholar

    [6]

    Carlie N A 2015 Int. J. Appl. Glass Sci. 6 364Google Scholar

    [7]

    Lonergan J, Lonergan C, McCloy J, Richardson K A 2019 J. Non-Cryst. Solids 510 192Google Scholar

    [8]

    Yang G, Gueguen Y, Sangleboeuf J-C, Rouxel T, Boussard-Plédel C, Troles J, Lucas P, Bureau B 2013 J. Non-Cryst. Solids 377 54Google Scholar

    [9]

    Wang T, Wei W H, Shen X, Wang R P, Davies B L, Jackson I 2013 J. Phys. D: Appl. Phys. 46 165302Google Scholar

    [10]

    Wang R P, Wang T, Choi D Y, Madden S, Luther-Davies B 2011 AIP Conf. Proc. 1393 34

    [11]

    Xu S W, Liang T, Zhu X Y 2023 Chalcogenide Lett. 20 55Google Scholar

    [12]

    Xu S W, Wang X S, Shen X 2024 Acta Phys. Sin. 73 057102 [许思维, 王训四, 沈祥 2024 73 057102]Google Scholar

    Xu S W, Wang X S, Shen X 2024 Acta Phys. Sin. 73 057102Google Scholar

    [13]

    Phillips J C 1979 J. Non-Cryst. Solids 34 153Google Scholar

    [14]

    Xia F, Baccaro S, Wang H, Hua W, Zeng H D, Zhang X H, Chen G R 2008 J. Non-Cryst. Solids 354 1365Google Scholar

    [15]

    Opletal G, Wang R P, Russo S P 2013 Phys. Chem. Chem. Phys. 15 4582Google Scholar

    [16]

    Tichý L, Tichá H 1995 J. Non-Cryst. Solids 189 141Google Scholar

    [17]

    Xia F, Baccaro S, Zhao D, Falconieri M, Chen G 2005 Nucl. Instrum. Methods Phys. Res. B 234 525Google Scholar

    [18]

    Sharma E, Sharma R, Sharma V, Sharma P 2018 AIP Conf. Proc. 2050 020008

    [19]

    Zha C, Wang R, Smith A, Prasad A, Jarvis R A, Luther-Davies B 2007 J. Mater. Sci-Mater. El. 18 389Google Scholar

    [20]

    Arsova D 1996 J. Phys. Chem. Solids 57 1279Google Scholar

    [21]

    Fouad S S 1999 Vacuum 52 505Google Scholar

    [22]

    Cheng C, Wang X S, Xu T F, Sun L H, Pan Z H, Liu S, Zhu Q D, Liao F X, Nie Q H, Dai S X, Shen X H, Zhang X H, Chen W 2016 Infrared Phys. Techn. 76 698Google Scholar

    [23]

    Abd El-Rahman A A, Eid A, Sanad M, El-Ocker R 1998 J. Phys. Chem. Solids 59 825Google Scholar

    [24]

    Sharma P, Katyal S C 2008 J. Non-Cryst. Solids 354 3836Google Scholar

    [25]

    Gonçalves C, Mereau R, Nazabal V, Boussard-Pledel C, Roiland C, Furet E, Deschamps M, Bureau B, Dussauze M 2021 J. Solid State Chem. 297 122062Google Scholar

    [26]

    Hassanien A S, Sharma I, Akl A A 2020 J. Non-Cryst. Solids 531 119853Google Scholar

    [27]

    Knotek P, Kutalek P, Cernoskova E, Vlcek M, Tichy L 2020 RSC Adv. 10 42744Google Scholar

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构.  , 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 米浩婷, 杨安平, 黄梓轩, 田康振, 李跃兵, 马成, 刘自军, 沈祥, 杨志勇. Ga2S3-Sb2S3-Ag2S 硫系玻璃和光纤的制备及性能研究.  , 2023, 72(4): 047101. doi: 10.7498/aps.72.20221380
    [3] 胡博, 吴越豪, 郑雨璐, 戴世勋. 2 μm波段硫系玻璃微球激光器的制备和表征.  , 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [4] 杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇. Ge-Sb-Se硫系玻璃的折射率和热光系数.  , 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [5] 吴波, 赵浙明, 王训四, 江岭, 密楠, 潘章豪, 张培晴, 刘自军, 聂秋华, 戴世勋. Te基远红外硫系玻璃光纤的制备及性能分析.  , 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [6] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究.  , 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [7] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控.  , 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [8] 赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋. 低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析.  , 2016, 65(12): 124205. doi: 10.7498/aps.65.124205
    [9] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱.  , 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [10] 乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰. Ge-Se基硫系玻璃在通信波段的三阶非线性与光谱特性研究.  , 2015, 64(15): 154216. doi: 10.7498/aps.64.154216
    [11] 林常规, 翟素敏, 李卓斌, 屈国顺, 顾少轩, 陶海征, 戴世勋. GeS2-In2S3硫系玻璃的物化性质与晶化行为研究.  , 2015, 64(5): 054208. doi: 10.7498/aps.64.054208
    [12] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率.  , 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [13] 杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规. 中红外色散平坦硫系光子晶体光纤设计及性能研究.  , 2014, 63(1): 014210. doi: 10.7498/aps.63.014210
    [14] 杨志清, 王飞利, 林常规. 20GeS2·80Sb2S3硫系玻璃的析晶行为及动力学机理研究.  , 2013, 62(18): 184211. doi: 10.7498/aps.62.184211
    [15] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究.  , 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [16] 林常规, 李卓斌, 覃海娇, 倪文豪, 李燕颖, 戴世勋. GeS2-Ga2S3-CsI硫系玻璃的析晶行为及其组成依赖研究.  , 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [17] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究.  , 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [18] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究.  , 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [19] 戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华. Dy3+掺杂Ge-Ga-S-CsI玻璃中红外发光特性研究.  , 2010, 59(5): 3547-3553. doi: 10.7498/aps.59.3547
    [20] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响.  , 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
计量
  • 文章访问数:  788
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-07
  • 修回日期:  2024-05-27
  • 上网日期:  2024-05-31
  • 刊出日期:  2024-07-20

/

返回文章
返回
Baidu
map