-
随着光学技术由可见向中、远红外等长波长领域的发展,可透远红外的玻璃光纤研究成为近年来光学领域的发展热点之一.传统含Se的Te基硫系光纤无法工作于12 m以上的远红外.本文研究了新型GeTe-AgI硫系玻璃体系的提纯制备,利用挤压技术,制备了阶跃型GeTe-AgI远红外光纤,其光学损耗为:15.6 dB/m@10.6 m,整体低于24 dB/m@815 m.在实验过程中,首先采用传统的熔融-淬冷法和蒸馏纯化工艺制备了GeTe-AgI高纯玻璃样品.利用差示扫描量热仪、红外椭偏仪、红外光谱仪等测试了玻璃的物理性质和红外透过性能,分析了提纯工艺、AgI原料纯度对玻璃形成以及透过的影响,最后采用分步挤压法制备了芯包结构光纤.实验结果表明:蒸馏提纯和AgI原料纯度对玻璃的透过性能有着决定性的影响,同时Te含量的增加影响了玻璃的抗析晶能力,但新型挤压制备工艺和有效提纯技术共同保障了较低损耗Te基光纤的制备,所获得的GeTe-AgI光纤具有远红外宽谱应用的潜能(工作波段5.515 m)并且绿色环保,可以满足CO2激光的能量传输和远红外传感应用.When infrared (IR) is over 12 m, conventional chalcogenide (ChG) fibers are confused by the multiphonon absorption of Se, and novel glass materials for far-IR have become one of hot research points in recent years. Here, a novel ChG glass and fiber for far-IR without containing Se/As is well investigated. The glasses GeTe-AgI are purified by distillation and synthesized by melt-quenching method. The thermal properties and the infrared transmissions are reported. The step-index fiber, fabricated via a novel extrusion method, exhibits excellent transmission at 8-15 m: 24 dB/m in a range of 8-15 m and 15.6 dB/m at 10.6 m. The influences of oxygen contaminant and the purity of AgI on the glass transmission and fiber attenuation are discussed. Structural and physical properties of GeTe-AgI glass system are studied with differential scanning calorimetry and ellipsometer instrument. Optical spectra of GeTe-AgI glass system are obtained by spectrophotometer and infrared spectrometer. Main purification process with oxygen-getters (magnesium) is disclosed. The fiber attenuation is measured by the cut-back method with a Fourier transform infrared spectrometer. The lowest loss of this fiber can be reduced to 15.6 dB/m at 10.6 m. The results show that these glasses are well transparent in a wide IR window from 1.7 to 25 m, and these glass fibers can transmit light up to 15 m, thus the GeTe-AgI glass system is one of good candidates for far-IR. The fiber attenuation can be reduced effectively by the reasonable purification and novel extruded-processing. These environment friendly fibers are suited for far-IR applications, such as greenhouse gas sensing and the power delivery of CO2 laser.
-
Keywords:
- GeTe-AgI /
- chalcogenide glass /
- far-infrared /
- environment friendly
[1] Sun J, Nie Q H, Wang G X, Wang X S, Dai S X, Zhang W, Song B A, Shen X, Xu T F 2011 Acta Phys. Sin. 60 114212 (in Chinese)[孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋保安, 沈祥, 徐铁峰 2011 60 114212]
[2] Zhao Z M, Wang X S, Dai S X, Pan Z H, Liu S, Sun L H, Zhang P Q, Liu Z J, Nie Q H, Shen X, Wang R P 2016 Opt. Lett. 41 5222
[3] Barh A, Ghosh S, Varshney R K, Pal B P 2013 Opt. Express 21 9547
[4] Xiong C, Magi E, Luan F, Tuniz A, Dekker S, Sanghera J S, Shaw L B, Aggarwal I D, Eggleton B J 2009 Appl. Opt. 48 5467
[5] Danto S, Houizot P, Boussard-Pledel C, Zhang X H, Smektala F, Lucas J 2006 Adv. Funct. Mater. 16 1847
[6] Shiryaev V S, Adam J L, Zhang X H, Boussard-Pldel C, Lucas J, Churbanov M F 2004 J. Non-Cryst. Solids 336 113
[7] Zhao Z M, Wu B, Liu Y J, Jiang L, Mi N, Wang X S, Liu Z J, Liu S, Pan Z H, Nie Q H, Dai S X 2016 Acta Phys. Sin. 65 124205 (in Chinese)[赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋 2016 65 124205]
[8] Zhang X H, Ma H L, Blanchetiere C, Le Foulgoc K, Lucas J, Heuze J, Colardelle P, Froissard P, Picque D, Corrieu G 1994 Int. Soc. Opt. Photon. 2131 90
[9] He Y J, Nie Q H, Sun J, Wang X S, Wang G X, Dai S X, Shen X, Xu T F 2011 Acta Photon. Sin. 40 1307
[10] Wang X S, Nie Q H, Wang G X, Sun J, Song B A, Dai S X, Zhang X H, Bureau B, Boussard C, Conseil C 2012 Spectrochim. Acta Part A:Molecul. Biomolecul. Spectrosc. 86 586
[11] Vigreux-Bercovici C, Bonhomme E, Pradel A, Broquin J E, Labadie L, Kern P 2007 Appl. Phys. Lett. 90 1
[12] Conseil C, Bastien J C, Boussard-Pledel C, Zhang X H, Lucas P, Dai S X, Lucas J, Bureau B 2012 Opt. Mater. Express 2 1470
[13] Nie Q H, Wang G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese)[聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 59 7949]
[14] Jiang C, Wang X S, Zhu M M, Xu H J, Nie Q H, Dai S X, Tao G M, Shen X, Cheng C, Zhu Q D, Liao F X, Zhang P Q, Zhang P Q, Liu Z J, Zhang X H 2016 Opt. Eng. 55 056114
[15] Hrub A, Houserov J 1972 Czechoslovak J. Phys. 22 89
[16] Savage J A, Nielsen S 1965 Infrared Phys. 5 195
[17] Chen G R, Cheng J J 1998 B. Chin. Ceram. Soc. 4 63
[18] He Y J, Nie Q H, Wang X S, Wang G X, Dai S X, Xu T F, Zhang P Q, Zhang X H, Bureau B 2012 J. Optoelect. Laser 23 1109
[19] Maurugeon S, Bureau B, Boussard-Pldel C, Faber A J, Zhang X H, Geliesen W, Lucas J 2009 J. Non-Cryst. Solids 355 2074
[20] Dai S X, Wang G X, Nie Q H, Wang X S, Shen X, Xu T F, Ying L, Sun J, Bai K, Zhang X H 2010 Infrared Phys. Techn. 53 392
-
[1] Sun J, Nie Q H, Wang G X, Wang X S, Dai S X, Zhang W, Song B A, Shen X, Xu T F 2011 Acta Phys. Sin. 60 114212 (in Chinese)[孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋保安, 沈祥, 徐铁峰 2011 60 114212]
[2] Zhao Z M, Wang X S, Dai S X, Pan Z H, Liu S, Sun L H, Zhang P Q, Liu Z J, Nie Q H, Shen X, Wang R P 2016 Opt. Lett. 41 5222
[3] Barh A, Ghosh S, Varshney R K, Pal B P 2013 Opt. Express 21 9547
[4] Xiong C, Magi E, Luan F, Tuniz A, Dekker S, Sanghera J S, Shaw L B, Aggarwal I D, Eggleton B J 2009 Appl. Opt. 48 5467
[5] Danto S, Houizot P, Boussard-Pledel C, Zhang X H, Smektala F, Lucas J 2006 Adv. Funct. Mater. 16 1847
[6] Shiryaev V S, Adam J L, Zhang X H, Boussard-Pldel C, Lucas J, Churbanov M F 2004 J. Non-Cryst. Solids 336 113
[7] Zhao Z M, Wu B, Liu Y J, Jiang L, Mi N, Wang X S, Liu Z J, Liu S, Pan Z H, Nie Q H, Dai S X 2016 Acta Phys. Sin. 65 124205 (in Chinese)[赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋 2016 65 124205]
[8] Zhang X H, Ma H L, Blanchetiere C, Le Foulgoc K, Lucas J, Heuze J, Colardelle P, Froissard P, Picque D, Corrieu G 1994 Int. Soc. Opt. Photon. 2131 90
[9] He Y J, Nie Q H, Sun J, Wang X S, Wang G X, Dai S X, Shen X, Xu T F 2011 Acta Photon. Sin. 40 1307
[10] Wang X S, Nie Q H, Wang G X, Sun J, Song B A, Dai S X, Zhang X H, Bureau B, Boussard C, Conseil C 2012 Spectrochim. Acta Part A:Molecul. Biomolecul. Spectrosc. 86 586
[11] Vigreux-Bercovici C, Bonhomme E, Pradel A, Broquin J E, Labadie L, Kern P 2007 Appl. Phys. Lett. 90 1
[12] Conseil C, Bastien J C, Boussard-Pledel C, Zhang X H, Lucas P, Dai S X, Lucas J, Bureau B 2012 Opt. Mater. Express 2 1470
[13] Nie Q H, Wang G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese)[聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 59 7949]
[14] Jiang C, Wang X S, Zhu M M, Xu H J, Nie Q H, Dai S X, Tao G M, Shen X, Cheng C, Zhu Q D, Liao F X, Zhang P Q, Zhang P Q, Liu Z J, Zhang X H 2016 Opt. Eng. 55 056114
[15] Hrub A, Houserov J 1972 Czechoslovak J. Phys. 22 89
[16] Savage J A, Nielsen S 1965 Infrared Phys. 5 195
[17] Chen G R, Cheng J J 1998 B. Chin. Ceram. Soc. 4 63
[18] He Y J, Nie Q H, Wang X S, Wang G X, Dai S X, Xu T F, Zhang P Q, Zhang X H, Bureau B 2012 J. Optoelect. Laser 23 1109
[19] Maurugeon S, Bureau B, Boussard-Pldel C, Faber A J, Zhang X H, Geliesen W, Lucas J 2009 J. Non-Cryst. Solids 355 2074
[20] Dai S X, Wang G X, Nie Q H, Wang X S, Shen X, Xu T F, Ying L, Sun J, Bai K, Zhang X H 2010 Infrared Phys. Techn. 53 392
计量
- 文章访问数: 5681
- PDF下载量: 213
- 被引次数: 0