搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

立方大腔体静高压装置中叶腊石的传压及密封性能研究

田毅 杜明浩 张佳威 贺端威

引用本文:
Citation:

立方大腔体静高压装置中叶腊石的传压及密封性能研究

田毅, 杜明浩, 张佳威, 贺端威

Research on pressure transmission and sealing performance of pyrophyllite in a cubic large chamber static high-pressure device

Tian Yi, Du Ming-Hao, Zhang Jia-Wei, He Duan-Wei
PDF
HTML
导出引用
  • 本文基于高压研究及超硬材料生产所用的静高压立方大腔体(六面顶)压机的需要, 制备了源于南非叶腊石矿的两种(A和B)叶腊石粉压块, 并与同工艺国产(北京门头沟)黄色叶腊石粉压块进行比较, 以此建立评估叶腊石传压及密封性能的实验方法与物理判据. 采用Bi, Tl, Ba等标压物质原位标定了以上3种叶腊石压腔中心位置及密封边处的压力; 同时, 采用银熔点法分别获得了3种叶腊石作传压密封材料时高温下腔体压力与系统加载的对应关系. 结果表明, 在相同加载油压下南非叶腊石B粉压块和国内叶腊石粉压块中心位置的压力差值不超过0.1 GPa, 在升压和降压过程中叶腊石块中心位置与密封边位置的压力差值也更为相近. 相比于南非叶蜡石A粉压块, B粉压块在高温传压和密封性能上更接近国产叶腊石粉压块.
    Owing to the need for a hydrostatic high-pressure cubic large cavity (hexahedral top) press used in high-pressure research and production of superhard material, two kinds of pyrophyllite powder compacts (A and B) from pyrophyllite mine in South Africa are prepared, and compared with the domestic yellow pyrophyllite powder compacts (Mentougou, Beijing) produced by the same process, to establish experimental methods and physical criteria for evaluating the pressure transmission and sealing performance of pyrophyllite. During the experiment, standard pressure materials such as Bi, Tl, and Ba are used to in-situ calibrate the pressure at the central positions and sealing edges of the pyrophyllite pressure chambers from the three aforementioned compacts under normal pressure conditions. Additionally, the silver melting point method is employed to obtain the corresponding relationship between chamber pressure at high temperature and system loading when using these three types of pyrophyllite as load-transmitting sealing materials. The results show that under the same hydraulic pressure loading, the difference in pressure at the central position between South African pyrophyllite B powder blocks and domestically produced pyrophyllite powder blocks does not exceed 0.1 GPa. Furthermore, in pressurization process and depressurization processe, the differences in pressure between the central position and the sealing edge of the pyrophyllite blocks are notably similar. Compared with South African pyrophyllite A powder blocks, pyrophyllite B powder blocks exhibit a closer resemblance to domestically produced pyrophyllite powder blocks in terms of high-temperature load transmission and sealing performance. Pyrophyllite B powder blocks from South Africa have the potential to serve as a substitute for domestically produced pyrophyllite without changing the existing superhard material synthesis process, making them promising candidates for use as load-transmitting media and sealing materials. These research findings hold significant academic importance in the realms of high-pressure research and superhard material production. They provide valuable insights into the selection of suitable transmission and sealing materials and the optimization of high-pressure experimental conditions. Additionally, this study presents robust method and criteria for experimental procedures and performance assessment.
      通信作者: 贺端威, duanweihe@scu.edu.cn
      Corresponding author: He Duan-Wei, duanweihe@scu.edu.cn
    [1]

    王海阔, 贺端威, 许超, 管俊伟, 王文丹, 寇自力, 彭放 2013 高压 27 633Google Scholar

    Wang H K, He D W, Xu C, Guan J W, Wang W D, Kou Z L, Peng F 2013 Chin. J. High Pressure Phys. 27 633Google Scholar

    [2]

    彭放, 贺端威 2018 高压 32 010105Google Scholar

    Peng F, He D W 2018 Chin. J. High Pressure Phys. 32 010105Google Scholar

    [3]

    崔祥仁, 方啸虎, 邢英 2021 超硬材料工程 33 39

    Cui X R, Fang X H, Xing Y 2021 Superhard Mater. Eng. 33 39

    [4]

    He D W, Zhao Y S, Sheng T D, et al. 2003 Rev. Sci. Instrum. 74 3012Google Scholar

    [5]

    Yan X Z, He D W, Xu C, Ren X T, Zhou X L, Liu S Z 2012 High Press. Res. 32 482Google Scholar

    [6]

    Fang L M, He D W, Chen C, Ding L, Luo X J 2007 High Press. Res. 27 367Google Scholar

    [7]

    Liu X, Chen J L, Tang J J, He Q, Li S C, Peng F, He D W, Zhang L F, Fei Y W 2012 High Press. Res. 32 239Google Scholar

    [8]

    Hu Q W, Fang L M, Li Q, et al. 2019 High Press. Res. 39 655Google Scholar

    [9]

    王海阔, 任瑛, 贺端威, 许超 2017 66 090702Google Scholar

    Wang H K, Ren Y, He D W, Xu C 2017 Acta Phys. Sin. 66 090702Google Scholar

    [10]

    Wang H K, He D W 2012 High Press. Res. 32 186Google Scholar

    [11]

    Wang Y P, Kou Z L, Zhang J W, Chen S J, Zhang L, Peng B, Zhao M X, Jiang M L, Yin X S, He D W 2020 Rev. Sci. Instrum. 91 035119.Google Scholar

    [12]

    Yan X Z, Ren X T, He D W 2016 Rev. Sci. Instrum. 87 125006Google Scholar

    [13]

    李帅锜, 贺端威, 张佳威 2022 物理 51 228Google Scholar

    Li S Q, He D W, Zhang J W 2022 Physics 51 228Google Scholar

    [14]

    张佳威, 李强, 王俊普, 贺端威 2019 高压 33 020105Google Scholar

    Zhang J W, Li Q, Wang J P, He D W 2019 Chin. J. High Pressure Phys. 33 020105Google Scholar

    [15]

    王强, 贺端威, 刘进, 刘方明, 丁未, 马迎功, 刘腾, 李媛媛, 吴京军, 张佳威, 寇自力 2017 高压 31 511Google Scholar

    Wan Q, He D W, Liu J, Liu F M, Ding W, Ma Y G, Liu T, Li Y Y, Wu J J, Zhang J W, Kou Z L 2017 Chin. J. High Pressure Phys. 31 511Google Scholar

    [16]

    王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放 2010 59 3107Google Scholar

    Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107Google Scholar

    [17]

    王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张 剑, 寇自力, 彭放 2008 57 5429Google Scholar

    Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429Google Scholar

    [18]

    何强, 唐俊杰, 王霏, 刘曦 2014 高压 28 145

    He Q, Tang J J, Wang F, Liu X 2014 Chin. J. High Pressure Phys. 28 145

    [19]

    管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯 2012 61 100701Google Scholar

    Guan J W, He D W, Wang H K, Peng F, Xu C, Wang W D, Wang K X, He K 2012 Acta Phys. Sin. 61 100701Google Scholar

    [20]

    张旺玺, 梁宝岩, 李启泉 2021 超硬材料工程 33 30

    Zhang W X, Liang B Y, Li Q Q 2021 Superhard Mater. Eng. 33 30

    [21]

    王明智 2020 金刚石与磨料磨具工程 40 1

    Wang M Z 2020 Diamond Abrasives Eng. 40 1

    [22]

    谢光灼, 王绍斌, 李波, 吴瑞良, 陈立舫, 徐珊慧 1998 金刚石与磨料磨具工程 3 7

    Xie G Z, Wang S B, Li B, Wu R L, Chen L F, Xu S H 1998 Diamond Abrasives Eng. 3 7

    [23]

    史斌, 刘鑫, 辛蜜蜜, 林元惠, 赵云鹏, 刘钦甫 2017 煤田地质与勘探 45 25Google Scholar

    Shi B, Liu X, Xin M M, Lin Y H, Zhao Y P, Liu Q F 2017 Coal Geol. Explor. 45 25Google Scholar

    [24]

    许饮豪, 赵美玉 1995 广东工学院学报 12 72

    Xu Y H, Zhao M Y 1995 J. Guangdong Univ. Technol. 12 72

    [25]

    Gatta G D, Lotti P, Merlini M, Liermann H P, Lausi A, Valdrè G, Pavese A 2014 Phys. Chem. Miner. 42 309Google Scholar

    [26]

    陈丽英, 刘秀茹, 吴学华, 苏磊, 洪时明 2004 珠宝科技 16 6

    Chen L Y, Liu X R, Wu X H, Su L, Hong S M 2004 Jewelry Science and Technology 16 6

    [27]

    张巍 2017 金属矿山 8 1Google Scholar

    Zhang W 2017 Met. Mine 8 1Google Scholar

    [28]

    郑日升, 王大伟, 方啸虎 2011 有色金属工程 63 219

    Zheng R S, Wang D W, Fang X H 2011 Nonferrous Metals 63 219

    [29]

    贾攀, 刘乾坤, 张凤莲, 胡来运, 吴定雨, 王飞飞, 丁建 2015 超硬材料工程 27 34

    Jia P, Liu Q K, Zhang F L, Hu L Y, Wu D Y, Wang F F, Ding J 2015 Superhard Mater. Eng. 27 34

    [30]

    Wang H K, He D W, Yan X Z, Xu C, Guan J W, Tan N, Wang W D 2011 High Press. Res. 31 581Google Scholar

    [31]

    Li R, Xu B J, Zhang Q C, Gu X, Zheng G L, Ma H A, Jia X P 2016 High Press. Res. 36 575Google Scholar

    [32]

    刘乾坤, 赵鹏, 吴定雨, 昝亚男, 武周军, 王卫康 2019 超硬材料工程 31 16

    Liu Q K, Zhao P, Wu D Y, Zan Y N, Wu Z J, Wang W K 2019 Superhard Mater. Eng. 31 16

    [33]

    Zhang J W, Liu F M, Wu J J, et al. 2018 Rev. Sci. Instrum. 89 075106Google Scholar

    [34]

    魏存弟, 赵峰, 马鸿文, 李金洪, 杨殿范, 三国彰 2005 吉林大学学报(地球科学版) 35 150

    Wei C D, Zhao F, Ma H W, Li J H, Yang D F, San G Z 2005 J. Jilin Univ. , Earth Sci. Ed. 35 150

    [35]

    徐文炘, 李蘅, 郭陀珠, 郭桦 2003 矿产与地质 17 242Google Scholar

    Xu W X, Li H, Guo T Z, Guo H 2003 Mineral Resources and Geology 17 242Google Scholar

    [36]

    Boren M D, Babb S E, Scott G J 1965 Rev. Sci. Instrum. 36 1456Google Scholar

    [37]

    Decker D L, Bassett W A, Merrill L, Hall H T, Barnett J D 1972 J. Phys. Chem. Ref. Data 1 773Google Scholar

    [38]

    Cohen L H, Klement W, Kennedy G C 1966 Phys. Rev. 145 519Google Scholar

    [39]

    张振禹, 汪灵 1998 硅酸盐学报 26 618

    Zhang Z Y, Wang L 1998 J. Chin. Silic. Soc. 26 618

    [40]

    徐跃, 陈晓东, 郝兆印 2007 金刚石与磨料磨具工程 6 76Google Scholar

    Xu Y, Chen X D, Hao Z Y 2007 Diamond Abrasives Eng. 6 76Google Scholar

    [41]

    Chen D M, Jiang Z C, Zhang H F 1991 J. Mineral. Petrol. 2 45 [陈大梅, 姜泽春, 张惠芬 1991 矿物岩石 2 45

    Chen D M, Jiang Z C, Zhang H F 1991 J. Mineral. Petrol. 2 45

    [42]

    Akella J, Kennedy G C 1971 J. Geophys. Res. 76 496Google Scholar

  • 图 1  叶腊石粉压立方块的光学照片、断面SEM图及XRD衍射谱 (a)黄色叶腊石; (b)南非A; (c) 南非B; (d) 3种叶腊石的XRD检测结果

    Fig. 1.  Optical photos, cross section SEM and XRD spectrum of pyrophyllite powder pressing block: (a) Yellow pyrophyllite; (b) South Africa pyrophyllite A; (c) South Africa pyrophyllite B; (d) XRD results of three pyrophyllite powder pressing block.

    图 2  常温压力标定实验组装示意图及电路图 (a)内部电路图及实验组装示意图; (b)外部电路图

    Fig. 2.  Assembly diagram and circuit diagram of the normal temperature pressure calibration experiment: (a) Internal circuit and schematic diagram of assembly; (b) external circuit.

    图 3  高温压力标定实验组装示意图及标定结果 (a)实验组装; (b) 50 MPa油压加载下黄色叶腊石作密封材料时的压力标定结果

    Fig. 3.  Assembly diagram and calibration results of high-temperature pressure calibration experiment: (a) Assembly diagram; (b) pressure calibration results of yellow pyrophyllite as sealing material under 50 MPa oil pressure loading.

    图 4  密封边压力标定实验原理图 (a)外部电路图; (b)实验组装示意图; (c)内部电路图

    Fig. 4.  Schematic diagram of sealing edge pressure calibration experiment: (a) External circuit; (b) experimental assembly diagram; (c) internal circuit.

    图 5  叶腊石立方块中心压力与加载油压之间的对应关系(a)室温压力标定结果; (b) 高温压力标定结果

    Fig. 5.  Corresponding relationship between central pressure and loading oil pressure of pyrophyllite cube: (a) Pressure calibration results at room temperature; (b) pressure calibration results at high temperature.

    图 6  加压前后叶腊石流变行为的原理示意图 (a) 加压前; (b) 加压后

    Fig. 6.  Schematic diagram of the rheological behavior of pyrophyllite before and after compression: (a) Before compression; (b) after compression.

    图 7  黄色叶腊石中心位置的压力(Pc)和密封边处的压力(Pg)与加载油压的对应关系 (a)升压过程; (b) 降压过程

    Fig. 7.  Pressure (Pc) at the center and the sealing edge (Pg) of yellow pyrophyllite correspond to the loading oil pressure: (a) Compress; (b) decompression.

    图 8  $ \Delta $P随密封边压力的变化曲线 (a) 升压过程; (b) 降压过程

    Fig. 8.  Variation curve of $ \Delta P $ with gasket pressure: (a) Compress; (b) decompression.

    Baidu
  • [1]

    王海阔, 贺端威, 许超, 管俊伟, 王文丹, 寇自力, 彭放 2013 高压 27 633Google Scholar

    Wang H K, He D W, Xu C, Guan J W, Wang W D, Kou Z L, Peng F 2013 Chin. J. High Pressure Phys. 27 633Google Scholar

    [2]

    彭放, 贺端威 2018 高压 32 010105Google Scholar

    Peng F, He D W 2018 Chin. J. High Pressure Phys. 32 010105Google Scholar

    [3]

    崔祥仁, 方啸虎, 邢英 2021 超硬材料工程 33 39

    Cui X R, Fang X H, Xing Y 2021 Superhard Mater. Eng. 33 39

    [4]

    He D W, Zhao Y S, Sheng T D, et al. 2003 Rev. Sci. Instrum. 74 3012Google Scholar

    [5]

    Yan X Z, He D W, Xu C, Ren X T, Zhou X L, Liu S Z 2012 High Press. Res. 32 482Google Scholar

    [6]

    Fang L M, He D W, Chen C, Ding L, Luo X J 2007 High Press. Res. 27 367Google Scholar

    [7]

    Liu X, Chen J L, Tang J J, He Q, Li S C, Peng F, He D W, Zhang L F, Fei Y W 2012 High Press. Res. 32 239Google Scholar

    [8]

    Hu Q W, Fang L M, Li Q, et al. 2019 High Press. Res. 39 655Google Scholar

    [9]

    王海阔, 任瑛, 贺端威, 许超 2017 66 090702Google Scholar

    Wang H K, Ren Y, He D W, Xu C 2017 Acta Phys. Sin. 66 090702Google Scholar

    [10]

    Wang H K, He D W 2012 High Press. Res. 32 186Google Scholar

    [11]

    Wang Y P, Kou Z L, Zhang J W, Chen S J, Zhang L, Peng B, Zhao M X, Jiang M L, Yin X S, He D W 2020 Rev. Sci. Instrum. 91 035119.Google Scholar

    [12]

    Yan X Z, Ren X T, He D W 2016 Rev. Sci. Instrum. 87 125006Google Scholar

    [13]

    李帅锜, 贺端威, 张佳威 2022 物理 51 228Google Scholar

    Li S Q, He D W, Zhang J W 2022 Physics 51 228Google Scholar

    [14]

    张佳威, 李强, 王俊普, 贺端威 2019 高压 33 020105Google Scholar

    Zhang J W, Li Q, Wang J P, He D W 2019 Chin. J. High Pressure Phys. 33 020105Google Scholar

    [15]

    王强, 贺端威, 刘进, 刘方明, 丁未, 马迎功, 刘腾, 李媛媛, 吴京军, 张佳威, 寇自力 2017 高压 31 511Google Scholar

    Wan Q, He D W, Liu J, Liu F M, Ding W, Ma Y G, Liu T, Li Y Y, Wu J J, Zhang J W, Kou Z L 2017 Chin. J. High Pressure Phys. 31 511Google Scholar

    [16]

    王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放 2010 59 3107Google Scholar

    Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107Google Scholar

    [17]

    王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张 剑, 寇自力, 彭放 2008 57 5429Google Scholar

    Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429Google Scholar

    [18]

    何强, 唐俊杰, 王霏, 刘曦 2014 高压 28 145

    He Q, Tang J J, Wang F, Liu X 2014 Chin. J. High Pressure Phys. 28 145

    [19]

    管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯 2012 61 100701Google Scholar

    Guan J W, He D W, Wang H K, Peng F, Xu C, Wang W D, Wang K X, He K 2012 Acta Phys. Sin. 61 100701Google Scholar

    [20]

    张旺玺, 梁宝岩, 李启泉 2021 超硬材料工程 33 30

    Zhang W X, Liang B Y, Li Q Q 2021 Superhard Mater. Eng. 33 30

    [21]

    王明智 2020 金刚石与磨料磨具工程 40 1

    Wang M Z 2020 Diamond Abrasives Eng. 40 1

    [22]

    谢光灼, 王绍斌, 李波, 吴瑞良, 陈立舫, 徐珊慧 1998 金刚石与磨料磨具工程 3 7

    Xie G Z, Wang S B, Li B, Wu R L, Chen L F, Xu S H 1998 Diamond Abrasives Eng. 3 7

    [23]

    史斌, 刘鑫, 辛蜜蜜, 林元惠, 赵云鹏, 刘钦甫 2017 煤田地质与勘探 45 25Google Scholar

    Shi B, Liu X, Xin M M, Lin Y H, Zhao Y P, Liu Q F 2017 Coal Geol. Explor. 45 25Google Scholar

    [24]

    许饮豪, 赵美玉 1995 广东工学院学报 12 72

    Xu Y H, Zhao M Y 1995 J. Guangdong Univ. Technol. 12 72

    [25]

    Gatta G D, Lotti P, Merlini M, Liermann H P, Lausi A, Valdrè G, Pavese A 2014 Phys. Chem. Miner. 42 309Google Scholar

    [26]

    陈丽英, 刘秀茹, 吴学华, 苏磊, 洪时明 2004 珠宝科技 16 6

    Chen L Y, Liu X R, Wu X H, Su L, Hong S M 2004 Jewelry Science and Technology 16 6

    [27]

    张巍 2017 金属矿山 8 1Google Scholar

    Zhang W 2017 Met. Mine 8 1Google Scholar

    [28]

    郑日升, 王大伟, 方啸虎 2011 有色金属工程 63 219

    Zheng R S, Wang D W, Fang X H 2011 Nonferrous Metals 63 219

    [29]

    贾攀, 刘乾坤, 张凤莲, 胡来运, 吴定雨, 王飞飞, 丁建 2015 超硬材料工程 27 34

    Jia P, Liu Q K, Zhang F L, Hu L Y, Wu D Y, Wang F F, Ding J 2015 Superhard Mater. Eng. 27 34

    [30]

    Wang H K, He D W, Yan X Z, Xu C, Guan J W, Tan N, Wang W D 2011 High Press. Res. 31 581Google Scholar

    [31]

    Li R, Xu B J, Zhang Q C, Gu X, Zheng G L, Ma H A, Jia X P 2016 High Press. Res. 36 575Google Scholar

    [32]

    刘乾坤, 赵鹏, 吴定雨, 昝亚男, 武周军, 王卫康 2019 超硬材料工程 31 16

    Liu Q K, Zhao P, Wu D Y, Zan Y N, Wu Z J, Wang W K 2019 Superhard Mater. Eng. 31 16

    [33]

    Zhang J W, Liu F M, Wu J J, et al. 2018 Rev. Sci. Instrum. 89 075106Google Scholar

    [34]

    魏存弟, 赵峰, 马鸿文, 李金洪, 杨殿范, 三国彰 2005 吉林大学学报(地球科学版) 35 150

    Wei C D, Zhao F, Ma H W, Li J H, Yang D F, San G Z 2005 J. Jilin Univ. , Earth Sci. Ed. 35 150

    [35]

    徐文炘, 李蘅, 郭陀珠, 郭桦 2003 矿产与地质 17 242Google Scholar

    Xu W X, Li H, Guo T Z, Guo H 2003 Mineral Resources and Geology 17 242Google Scholar

    [36]

    Boren M D, Babb S E, Scott G J 1965 Rev. Sci. Instrum. 36 1456Google Scholar

    [37]

    Decker D L, Bassett W A, Merrill L, Hall H T, Barnett J D 1972 J. Phys. Chem. Ref. Data 1 773Google Scholar

    [38]

    Cohen L H, Klement W, Kennedy G C 1966 Phys. Rev. 145 519Google Scholar

    [39]

    张振禹, 汪灵 1998 硅酸盐学报 26 618

    Zhang Z Y, Wang L 1998 J. Chin. Silic. Soc. 26 618

    [40]

    徐跃, 陈晓东, 郝兆印 2007 金刚石与磨料磨具工程 6 76Google Scholar

    Xu Y, Chen X D, Hao Z Y 2007 Diamond Abrasives Eng. 6 76Google Scholar

    [41]

    Chen D M, Jiang Z C, Zhang H F 1991 J. Mineral. Petrol. 2 45 [陈大梅, 姜泽春, 张惠芬 1991 矿物岩石 2 45

    Chen D M, Jiang Z C, Zhang H F 1991 J. Mineral. Petrol. 2 45

    [42]

    Akella J, Kennedy G C 1971 J. Geophys. Res. 76 496Google Scholar

  • [1] 郭琳琳, 赵梓彤, 隋明宏, 王鹏, 刘冰冰. 限域条件下氮分子的高温高压诱导聚合.  , 2024, 73(8): 086102. doi: 10.7498/aps.73.20240173
    [2] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响.  , 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] 杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威. 巴黎-爱丁堡压机中子衍射高压下温度加载实验.  , 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [4] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程.  , 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [5] 江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证.  , 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [6] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展.  , 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [7] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法.  , 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [8] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究.  , 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [9] 刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力. 复合超硬材料的高压合成与研究.  , 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [10] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究.  , 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [11] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响.  , 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [12] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定.  , 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [13] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究.  , 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [14] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能.  , 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [15] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算.  , 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [16] 黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣. 二硼化钛的高温高压制备及其物性.  , 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [17] 赵艳红, 刘海风, 张其黎. 高温高压下爆轰产物中不同种分子间的相互作用.  , 2012, 61(23): 230509. doi: 10.7498/aps.61.230509
    [18] 赵艳红, 刘海风, 张弓木, 张广财. 高温高压下爆轰产物分子间相互作用的研究.  , 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [19] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备.  , 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [20] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究.  , 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
计量
  • 文章访问数:  2553
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-09-08
  • 上网日期:  2023-10-09
  • 刊出日期:  2024-01-05

/

返回文章
返回
Baidu
map