搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理

王凯乐 杨文奎 史新成 侯华 赵宇宏

引用本文:
Citation:

相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理

王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏

Phase-field-method-studied mechanism of Cu-rich phase precipitation in AlxCuMnNiFe high-entropy alloy

Wang Kai-Le, Yang Wen-Kui, Shi Xin-Cheng, Hou Hua, Zhao Yu-Hong
PDF
HTML
导出引用
  • BCC(体心立方)和FCC(面心立方)结构共存的高熵合金通常具有优异的综合力学性能, Al元素可以促进含Cu高熵合金由FCC向BCC结构转变. 本文基于Chan-Hilliard方程和Allen-Cahn方程, 建立AlxCuMnNiFe高熵合金三维相场模型, 模拟了AlxCuMnNiFe高熵合金(x = 0.4, 0.5, 0.6, 0.7)在823 K等温时效时纳米富Cu相的微观演化过程. 结果表明, AlxCuMnNiFe高熵合金时效时会产生两种复杂核壳结构: 富Cu核/B2s壳以及B2c核/FeMn壳, 通过讨论分析发现形成的B2c对纳米富Cu相的形成起到抑制作用, 这种抑制作用随着Al元素的增加而变大; 结合经验公式做出AlxCuMnNiFe高熵合金富Cu相的屈服强度随时效时间的变化曲线, 得到峰值屈服强度的时效时间和合金体系, 可以为时效工艺提供参考.
    High-entropy alloys with BCC and FCC coexisting structures usually have excellent comprehensive mechanical properties, and Al element can promote the transformation of Cu-containing high-entropy alloys from FCC structure to BCC structure to obtain the BCC and FCC coexisting structures. In order to illustrate the process of phase separation of high entropy alloys, a low-cost Al-TM transition group element high-entropy alloy is selected in this work. Based on the Chan-Hilliard equation and Allen-Cahn equation, a three-dimensional phase field model of AlxCuMnNiFe high-entropy alloy is established, and the microscopic evolution of the nano-Cu-rich phase of AlxCuMnNiFe high-entropy alloy (x = 0.4, 0.5, 0.6, 0.7) at 823 K isothermal aging is simulated. The results show that the AlxCuMnNiFe high-entropy alloy generates two complex core-shell structures upon aging: Cu-rich core/B2s shell and B2c core/FeMn shell, and it is found through discussion and analysis that the formed B2c plays an inhibitory role in the formation of the nano-Cu-rich phase, and that this inhibitory role becomes larger with the increase of Al element. Combining the empirical formula, the curve of yield strength of the Cu-rich phase varying with the aging time is obtained for the AlxCuMnNiFe high-entropy alloy, and the overall yield strength of the high-entropy alloy has a rising-and-then-falling trend with the change of time, and the aging time of the peak yield strength and the alloy system are obtained from the change of the curve, so that the best alloy system and aging time of the high-entropy alloy can provide a reference for aging process.
      通信作者: 赵宇宏, zhaoyuhong@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52074246, 22008224, 52275390, 52205429, 52201146)、国防基础科研项目(批准号: JCKY2020408B002, WDZC2022-12)、山西省重点研发项目(批准号: 202102050201011, 202202050201014)和山西省研究生创新项目(批准号: 2021Y592)资助的课题.
      Corresponding author: Zhao Yu-Hong, zhaoyuhong@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52074246, 22008224, 52275390, 52205429, 52201146), the National Defense Basic Scientific Research Program of China (Grant Nos. JCKY2020408B002, WDZC2022-12), the Key Research and Development Program of Shanxi Province (Grant Nos. 202102050201011, 202202050201014), and the Shanxi Graduate Innovation Project, China (Grant No. 2021Y592)
    [1]

    Cantor B, Chang I T H, Knight P, Vincent A 2004 Mater. Sci. Eng., A 375 213

    [2]

    Zhang Y 2019 High-Entropy Materials (Singapore: Springer Nature Singapore Pte Ltd) p215

    [3]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y. 2004 Adv. Eng. Mater. 6 299Google Scholar

    [4]

    Zhou Y J, Zhang Y, Wang Y L, Chen G L 2007 Appl. Phys. Lett. 90 253

    [5]

    Niu S Z, Kou H C, Wang J, Li J S 2021 Rare Met. 40 2508

    [6]

    Sha M H, Zhang L, Zhang J W, Li N, Li T Z, Wang N 2017 Rare Met. Mater. Eng. 46 1237Google Scholar

    [7]

    Chen X, Hu J X, Liu Y, Xiang F 2021 Met. Mater. Int. 27 2230Google Scholar

    [8]

    Pradeep K G, Wanderka N, Choi P, Banhart J, Murty B S, Raabe D 2013 Acta Mater. 61 4696Google Scholar

    [9]

    Jones N G, Frezza A, Stone H J 2014 Mater. Sci. Eng., A 615 214Google Scholar

    [10]

    Dąbrowa J, Cieślak G, Stygar M, Mroczka K, Berebt K, Kulik T, Danielewski M 2017 Intermetallics 84 52Google Scholar

    [11]

    Wu P H, Liu N, Yang W, Zhu Z X, Liu Y P, Wang X J 2015 Mater. Sci. Eng. , A 642 142Google Scholar

    [12]

    Xian X, Lin L, Zhong Z, Zhang C, Chen C, Song K J, Cheng J G, Wu Y C 2018 Mater. Sci. Eng., A 713 134Google Scholar

    [13]

    Borkar T, Gwalani B, Choudhuri D, Alam T, Mantri A S, Gibson M A 2016 Intermetallics 71 31Google Scholar

    [14]

    Gwalani B, Choudhuri D, Soni V, Ren Y, Styles M, Hwang J Y, Nam S J, Ryu H, Hong S H, Banerjee R 2017 Acta Mater. 129 170Google Scholar

    [15]

    Shim S H, Pouraliakbar H, Hong S I 2022 Scr. Mater. 210 114473Google Scholar

    [16]

    Lahiri A 2022 J. Indian Inst. Sci. 102 39Google Scholar

    [17]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [18]

    Chen L Q, Zhao Y H 2021 Prog. Mater. Sci. 124 100868

    [19]

    Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Yadav A, Nomoto K, Niu R M, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W Q, Liao X Z, Chen L Q, Hagihara K, Li X Y, Ringer S, Ferry M 2021 Sci. Adv. 7 eabf3039Google Scholar

    [20]

    Tian X L, Zhao Y H, Peng D W, Guo Q W, Hou H 2021 Trans. Nonferrous Met. Soc. China 31 1175Google Scholar

    [21]

    Tian X L, Zhao Y H, Gu T, Guo Y L, Xu F Q, Hou H 2022 Mater. Sci. Eng., A 849 143485Google Scholar

    [22]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. Mater. Sci. Technol. 35 1044Google Scholar

    [23]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta Mater. 148 86Google Scholar

    [24]

    Chen W P, Zhao Y H, Yang S, Zhang D, Hou H 2021 Adv. Compos. Hybrid Mater. 4 371Google Scholar

    [25]

    Biner S B, Rao W, Zhang Y 2016 J. Nucl. Mater. 468 9Google Scholar

    [26]

    Koyama T, Onodera H 2005 Mater. Trans. 46 1187Google Scholar

    [27]

    Zhao Y H. 2022 Intermetallics 144 107528Google Scholar

    [28]

    Zeng Y F, Cai X R, Koslowski M 2019 Acta Mater. 164 1Google Scholar

    [29]

    Kadirvel K, Kloenne Z, Jensen J K, Fraser H, Wang Y 2021 Appl. Phys. Lett. 119 171905Google Scholar

    [30]

    Zuo X J, Coutinho Y, Chatterjee S, Moelans N 2022 Mater. Theor. 6 12Google Scholar

    [31]

    Li J L, Li Z, Wang Q, Dong C, Liaw P K 2020 Acta Mater. 197 10Google Scholar

    [32]

    Coutinho Y A, Kunwar A, Moelans N 2022 J. Mater. Sci. 57 10600Google Scholar

    [33]

    Zhao Y H, Liu K X, Hou H, Chen L Q 2022 Mater. Des. 216 110555Google Scholar

    [34]

    Zhao Y H, Sun Y Y, Hou H. 2022 Prog. Nat. Sci.-Mater. Int. 32 358Google Scholar

    [35]

    Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L 2019 J. Mater. Sci. 54 11263Google Scholar

    [36]

    蒋新安, 赵宇宏, 杨文奎, 田晓琳, 侯华 2022 71 080201Google Scholar

    Jiang X A, Zhao Y H, Yang W K, Tian X L, Hou H 2022 Acta Phys. Sin. 71 080201Google Scholar

    [37]

    栾亨伟, 赵威, 姚可夫 2020 材料热处理学报 41 1

    Luan H W, Zhao W, Yao K F 2020 Trans. Mater. Heat Treat. 41 1

    [38]

    Pang C, Jiang B B, Shi Y, Wang Q, Dong C 2015 J. Alloys Compd. 652 63Google Scholar

    [39]

    郝家苗 2020 硕士学位论文 (大连: 大连理工大学)

    Hao J M 2020 M. S. Thesis (Dalian: Dalian University of Technology) (in chinese)

    [40]

    Chen L Q 2002 Annual Review of Materials Research 32 113

    [41]

    Kuang W W, Wang H F, Li X, Zhang J B, Qing Z, Zhao Y H 2018 Acta Mater. 159 16Google Scholar

    [42]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [43]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [44]

    Kitashima T, Harada H. 2009 Acta Mater. 57 2020Google Scholar

    [45]

    Tsukada Y, Koyama T, Murata Y, Miura N, Kondo Y 2014 Comput. Mater. Sci. 83 371Google Scholar

    [46]

    Deng S, Chen W M, Zhong J, Zhang L J, Du Y, Chen L 2017 Calphad 56 230Google Scholar

    [47]

    Allen S, Cahn J W 1992 Acta Metall. 20 423

    [48]

    Chen H L, Mao H, Chen Q 2018 Mater. Chem. Phys. 210 279Google Scholar

    [49]

    Luo Z, Du Y, Liu Y L, Tang S, Pan Y F, Mao H, Peng Y B, Liu W S, Liu Z K 2018 Calphad 63 190Google Scholar

    [50]

    Li Y S, Zhu H, Zhang L, Cheng X L 2012 J. Nucl. Mater. 429 13Google Scholar

    [51]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268Google Scholar

    [52]

    Neumann G, Tuijn C 2011 Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data Elsevier

    [53]

    Khachaturian A G 1983 Acta Crystallogr.

    [54]

    Shen C, Wang Y 2005 Handb. Mater. Model.

    [55]

    Koyama T, Hashimoto K, Onodera H 2006 Mater. Trans. 47 2765Google Scholar

    [56]

    Cale W F, Totemeier T C 2003 Smithells Metals Reference Book (Oxford: Butter worth-Heinemann)

    [57]

    Sonkusare R, Swain A, Rahul M R, Samal S, Gurao N P, Biswas k, Singh S S, Nayan N 2019 Mater. Sci. Eng., A 759 415Google Scholar

    [58]

    龚子杰, 李春辉, 李晓宇, 李炜, 陈伟, 赵东国, 刘润芳 2022 精密成形工程 14 83Google Scholar

    Gong Z J, Li C H, Li X N, Li W, Chen W, Zhao D G, Liu R F 2022 J. Netshape Form. Eng. 14 83Google Scholar

    [59]

    Takeuchi A, Inoue A 2007 Mater. Trans., JIM 41 1372

    [60]

    Li B, Zhang L, Li C L, Li Q L, Chen J, Shun G G, Weng Y Q, Xu B, Hu S Y, Liu W 2018 J. Nucl. Mater. 507 59Google Scholar

    [61]

    程一丹 2018 硕士学位论文 (西安: 西安工业大学)

    Cheng Y D 2018 M. S. Thesis (Xi'an: Xi'an Technological University) (in Chinese)

    [62]

    王晓姣 2016 博士学位论文 (上海: 上海大学)

    Wang X J 2016 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese)

    [63]

    Jiao Z B, Luan J H, Miller M K, Yu C Y, Liu C T 2015 Acta Mater. 84 283Google Scholar

    [64]

    Isheim D, Kolli R P, Fine M E, Seidman D N 2006 Scr. Mater. 55 35Google Scholar

    [65]

    Russell K C, Brown L M 1972 Acta Metall. 20 969Google Scholar

    [66]

    Hahn S I, Hwang S J 2009 J. Alloys Compd. 483 207Google Scholar

    [67]

    Dinsdale A T 1991 Calphad 15 317Google Scholar

    [68]

    Liu X Y, Wang G, Hu Y, Ji Y Z, Rong Y M, Hu Y Z, Chen L Q 2021 Mater. Sci. Eng., A. 814 141223Google Scholar

  • 图 1  时效温度为823 K时Al0.7Cu1.5Mn1Ni1Fe1.5高熵合金三维形貌演化图 (a)—(e) 分别表示元素Cu, Ni, Al, Mn, Fe元素以及序参量的形貌; (1)—(5)表示不同演化时间

    Fig. 1.  Evolution of three-dimensional morphology of Al0.7Cu1.5Mn1Ni1Fe1.5 high entropy alloys at aging temperature of 823 K: (a)–(e) The morphology of elements Cu, Ni, Al, Mn, Fe and order parameters, respectively; (1)–(5) indicates different evolution times.

    图 2  时效温度为823 K时Al0.7Cu1.5Mn1Ni1Fe1.5高熵合金在时效过程中(a)总自由能与化学自由能(b)弹性能与界面能随时间的变化曲线

    Fig. 2.  Curves of (a) total free energy and chemical free energy (b) elastic energy and interfacial energy with time during aging of Al0.7Cu1.5Mn1Ni1Fe1.5 high entropy alloy at aging temperature of 823 K.

    图 3  t * = 20000时Al0.7Cu1.5Mn1Ni1Fe1.5高熵合金形貌图 (a) Ni的三维空间分布, 球状的B2相和环状的B2壳; (b) 球状富Cu相及周围元素分布; (c) 球状B2相及周围元素分布; (d) 短棒状的富Cu相及元素分布; (e) 球状富Cu相成分曲线; (f) 球状B2相成分曲线; (g) 短棒状富Cu相成分曲线

    Fig. 3.  Morphology of Al0.7Cu1.5Mn1Ni1Fe1.5 high-entropy alloy at t * = 20000: (a) Three-dimensional spatial distribution of Ni, spherical B2 phase and annular B2 shell; (b) spherical Cu-rich phase and surrounding elemental distribution; (c) spherical B2 phase and surrounding elemental distribution; (d) short rod-like Cu-rich phase and elemental distribution; (e) spherical Cu-rich phase composition curve; (f) spherical B2 phase composition curve; (g) short rod-shaped Cu-rich phase composition curve.

    图 4  在时效温度为823 K时Al0.7Cu1.5Mn1Ni1Fe1.5高熵合金B2-NiAl演化图 (a)—(f) B2-NiAl相不同元素不随时间变化得三维演化图; (g)—(l)相对应时刻的成分曲线

    Fig. 4.  The evolution of Al0.6Cu1.5Mn1Ni1Fe1.5 high-entropy alloy B2-NiAl at an aging temperature of 823 K: (a)–(f) The three-dimensional evolution of different elements of B2-NiAl phase without changing with time; (g)–(l) the composition curves obtained at the corresponding time.

    图 5  不同Al含量下AlxCuMnNiFe高熵合金 (a) 数量密度随时间变化; (b) 体积分数随时间变化; (c) 平均颗粒半径随时间变化

    Fig. 5.  Variation of (a) number density, (b) volume fraction and (c) average particle radius with time for AlxCuMnNiFe high-entropy alloys with different Al contents.

    图 6  不同合金体系在随时间变化的三维模拟图 (a)—(d) 表示Al0.4, Al0.5, Al0.6, Al0.7四个体系. (1)—(5)分别表示开始形核时间以及四个体系到达峰值数量密度的时间

    Fig. 6.  Three-dimensional simulations of different alloy systems over time, (a)–(d) for Al0.4, Al0.5, Al0.6, and Al0.7, respectively; (1)–(5) for the start of nucleation and the time to peak number density for the four systems, respectively.

    图 7  纳米富Cu相在时效过程中 (a) 共格强化、(b) 化学强化、(c) 模量强化、(d) Orowan强化和(e) 纳米富Cu相屈服强度随时效时间的变化

    Fig. 7.  (a) Co-grid strengthening, (b) chemical strengthening, (c) modulus strengthening, (d) Orowan strengthening and (e) variation of yield strength of nano-Cu-rich phase with aging time during aging.

    表 1  合金元素成分的原子百分含量(单位: %)

    Table 1.  Atomic percent of alloying element composition (unit: %).

    Alloy systemAlCuMnNiFe
    Al0.4Cu1.5Mn1Ni1Fe1.57.427.818.518.527.8
    Al0.5Cu1.5Mn1Ni1Fe1.59.227.218.218.227.2
    Al0.6Cu1.5Mn1Ni1Fe1.510.826.817.817.826.8
    Al0.7Cu1.5Mn1Ni1Fe1.512.2826.3617.517.526.36
    下载: 导出CSV

    表 2  合金元素的频率因子和扩散激活能[52]

    Table 2.  Frequency factor and activation energy of alloying elements.

    Alloy elementsCuMnNiAl
    ${D}_{i}^{0, \varphi }/{({10}^{-5}~{\rm{m} } }^{2}{\cdot}{ {\rm{s} } }^{-1}$)${\rm{\alpha } }({\rm{B} }{\rm{C} }{\rm{C} })$4.7014.9014.0053.50
    ${\rm{\gamma } }({\rm{F} }{\rm{C} }{\rm{C} })$4.301.781.082.20
    ${Q}_{i}^{0, \varphi }/{({10}^{5}~{\rm{J} }{\cdot}{\rm{m} }{\rm{o} }{\rm{l} } }^{-1}$)${\rm{\alpha } }({\rm{B} }{\rm{C} }{\rm{C} })$2.442.632.642.71
    ${\rm{\gamma } } ({\rm{F} }{\rm{C} }{\rm{C} } )$2.802.642.732.67
    $ {D}_{i}^{0, \varphi } $-frequency factor; $ {Q}_{i}^{0, \varphi } $-diffusion activation energy
    下载: 导出CSV

    表 3  相场模型参数

    Table 3.  Phase field parameters.

    Parameter typeParameterValueUnit
    Cahn-Hilliard model[55]$ {\kappa }_{c} $$ 5.0\times {10}^{-15} $${\rm{J} \cdot}{ {\rm{m} } }^{2}{\cdot{\rm{m} }{\rm{o} }{\rm{l} } }^{-1}$
    $ {\kappa }_{\eta } $$ 1.0\times {10}^{-15} $$ {\rm{J}}{\cdot{\rm{m}}}^{2}{\cdot{\rm{m}}{\rm{o}}{\rm{l}}}^{-1} $
    $ Y $$ 2.14\times {10}^{11} $$ {\rm{P}}{\rm{a}} $
    $ {V}_{{\rm{m}}} $$ 7.09\times {10}^{-6} $${ {\rm{m} } }^{3}{\cdot {\rm{m} }{\rm{o} }{\rm{l} } }^{-1}$
    $ W $$ 5.0\times {10}^{3} $${\rm J} {\cdot} {\rm mol}^{-1}$
    $ T $823K
    Elasticity constant[56]$ {C}_{11}^{{\rm{m}}} $228GPa
    $ {C}_{12}^{{\rm{m}}} $132GPa
    $ {C}_{44}^{{\rm{m}}} $116.5GPa
    $ {C}_{11}^{{\rm{p}}} $169GPa
    $ {C}_{12}^{{\rm{p}}} $122GPa
    $ {C}_{44}^{{\rm{p}}} $75.3GPa
    Lattice misfit coefficient[55]$ {\varepsilon }_{{\rm{C}}{\rm{u}}}^{0} $$ 3.29\times {10}^{-2} $
    $ {\varepsilon }_{{\rm{M}}{\rm{n}}}^{0} $$ 5.22\times {10}^{-4} $
    $ {\varepsilon }_{{\rm{N}}{\rm{i}}}^{0} $$ 4.75\times {10}^{-4} $
    $ {\varepsilon }_{{\rm{A}}{\rm{l}}}^{0} $$ 1.64\times {10}^{-4} $
    Simulation parameters$ {\rm{d}}x $1nm
    $ {\rm{d}}y $1nm
    $ {\rm{d}}z $1nm
    $ \Delta t $0.01
    $ {\kappa }_{c}, {\kappa }_{\eta } $-gradient energy coefficient; $ Y $-average stiffness; $ {V}_{{\rm{m}}} $-molar volume; $ W $-structural transformation barriers; $ {C}_{11}^{{\rm{m}}}, {C}_{12}^{{\rm{m}}}, {C}_{44}^{{\rm{m}}} $-elastic constant of the matrix phase; $ {C}_{11}^{{\rm{p}}}, {C}_{12}^{{\rm{p}}}, {C}_{44}^{{\rm{p}}} $-elastic constant of the precipitated phase; $ {\varepsilon }_{i}^{0}(i={\rm{C}}{\rm{u}}, {\rm{M}}{\rm{n}}, {\rm{N}}{\rm{i}}, {\rm{A}}{\rm{l}}) $- lattice misfit coefficients of Cu, Mn, Ni, Al; $ {\rm{d}}x, {\rm{d}}y, {\rm{d}}z $ unit length of simulated meshes; $ \Delta t $-unit time step
    下载: 导出CSV

    表 4  AlxCuMnNiFe中各元素的$ {\Delta H}_{{\rm{m}}{\rm{i}}{\rm{x}}} $[59](单位: kJ/mol)

    Table 4.  $ {\Delta H}_{{\rm{m}}{\rm{i}}{\rm{x}}} $between elements in AlxCuMnNiFe alloy (unit: kJ/mol)

    Alloy elementsAlCuMnNiFe
    Al–1–19–22–11
    Cu–14413
    Mn–194–80
    Ni–224–8–2
    Fe–11130–2
    下载: 导出CSV

    表 5  不同合金体系强化的基本数据

    Table 5.  Basic data on strengthening of different alloy systems.

    Alloy systemt *$ {N}_{v} $/($ \times {10}^{23}{{\rm{m}}}^{-3}) $f/% r/nmStrengthening/MPa
    Al0.4Cu1.5Mn1Ni1Fe1.545003.92910.01161.91481166
    Al0.5Cu1.5Mn1Ni1Fe1.545004.08170.01231.92861188
    Al0.6Cu1.5Mn1Ni1Fe1.550003.39510.01031.93431038
    Al0.7Cu1.5Mn1Ni1Fe1.575004.040.0312.63775
    When r$\; \leqslant \;$2 nm, it is a dislocation slicing mechanism, and when r > 2 nm, it is a dislocation bypassing mechanism.
    下载: 导出CSV
    Baidu
  • [1]

    Cantor B, Chang I T H, Knight P, Vincent A 2004 Mater. Sci. Eng., A 375 213

    [2]

    Zhang Y 2019 High-Entropy Materials (Singapore: Springer Nature Singapore Pte Ltd) p215

    [3]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y. 2004 Adv. Eng. Mater. 6 299Google Scholar

    [4]

    Zhou Y J, Zhang Y, Wang Y L, Chen G L 2007 Appl. Phys. Lett. 90 253

    [5]

    Niu S Z, Kou H C, Wang J, Li J S 2021 Rare Met. 40 2508

    [6]

    Sha M H, Zhang L, Zhang J W, Li N, Li T Z, Wang N 2017 Rare Met. Mater. Eng. 46 1237Google Scholar

    [7]

    Chen X, Hu J X, Liu Y, Xiang F 2021 Met. Mater. Int. 27 2230Google Scholar

    [8]

    Pradeep K G, Wanderka N, Choi P, Banhart J, Murty B S, Raabe D 2013 Acta Mater. 61 4696Google Scholar

    [9]

    Jones N G, Frezza A, Stone H J 2014 Mater. Sci. Eng., A 615 214Google Scholar

    [10]

    Dąbrowa J, Cieślak G, Stygar M, Mroczka K, Berebt K, Kulik T, Danielewski M 2017 Intermetallics 84 52Google Scholar

    [11]

    Wu P H, Liu N, Yang W, Zhu Z X, Liu Y P, Wang X J 2015 Mater. Sci. Eng. , A 642 142Google Scholar

    [12]

    Xian X, Lin L, Zhong Z, Zhang C, Chen C, Song K J, Cheng J G, Wu Y C 2018 Mater. Sci. Eng., A 713 134Google Scholar

    [13]

    Borkar T, Gwalani B, Choudhuri D, Alam T, Mantri A S, Gibson M A 2016 Intermetallics 71 31Google Scholar

    [14]

    Gwalani B, Choudhuri D, Soni V, Ren Y, Styles M, Hwang J Y, Nam S J, Ryu H, Hong S H, Banerjee R 2017 Acta Mater. 129 170Google Scholar

    [15]

    Shim S H, Pouraliakbar H, Hong S I 2022 Scr. Mater. 210 114473Google Scholar

    [16]

    Lahiri A 2022 J. Indian Inst. Sci. 102 39Google Scholar

    [17]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [18]

    Chen L Q, Zhao Y H 2021 Prog. Mater. Sci. 124 100868

    [19]

    Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Yadav A, Nomoto K, Niu R M, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W Q, Liao X Z, Chen L Q, Hagihara K, Li X Y, Ringer S, Ferry M 2021 Sci. Adv. 7 eabf3039Google Scholar

    [20]

    Tian X L, Zhao Y H, Peng D W, Guo Q W, Hou H 2021 Trans. Nonferrous Met. Soc. China 31 1175Google Scholar

    [21]

    Tian X L, Zhao Y H, Gu T, Guo Y L, Xu F Q, Hou H 2022 Mater. Sci. Eng., A 849 143485Google Scholar

    [22]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. Mater. Sci. Technol. 35 1044Google Scholar

    [23]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta Mater. 148 86Google Scholar

    [24]

    Chen W P, Zhao Y H, Yang S, Zhang D, Hou H 2021 Adv. Compos. Hybrid Mater. 4 371Google Scholar

    [25]

    Biner S B, Rao W, Zhang Y 2016 J. Nucl. Mater. 468 9Google Scholar

    [26]

    Koyama T, Onodera H 2005 Mater. Trans. 46 1187Google Scholar

    [27]

    Zhao Y H. 2022 Intermetallics 144 107528Google Scholar

    [28]

    Zeng Y F, Cai X R, Koslowski M 2019 Acta Mater. 164 1Google Scholar

    [29]

    Kadirvel K, Kloenne Z, Jensen J K, Fraser H, Wang Y 2021 Appl. Phys. Lett. 119 171905Google Scholar

    [30]

    Zuo X J, Coutinho Y, Chatterjee S, Moelans N 2022 Mater. Theor. 6 12Google Scholar

    [31]

    Li J L, Li Z, Wang Q, Dong C, Liaw P K 2020 Acta Mater. 197 10Google Scholar

    [32]

    Coutinho Y A, Kunwar A, Moelans N 2022 J. Mater. Sci. 57 10600Google Scholar

    [33]

    Zhao Y H, Liu K X, Hou H, Chen L Q 2022 Mater. Des. 216 110555Google Scholar

    [34]

    Zhao Y H, Sun Y Y, Hou H. 2022 Prog. Nat. Sci.-Mater. Int. 32 358Google Scholar

    [35]

    Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L 2019 J. Mater. Sci. 54 11263Google Scholar

    [36]

    蒋新安, 赵宇宏, 杨文奎, 田晓琳, 侯华 2022 71 080201Google Scholar

    Jiang X A, Zhao Y H, Yang W K, Tian X L, Hou H 2022 Acta Phys. Sin. 71 080201Google Scholar

    [37]

    栾亨伟, 赵威, 姚可夫 2020 材料热处理学报 41 1

    Luan H W, Zhao W, Yao K F 2020 Trans. Mater. Heat Treat. 41 1

    [38]

    Pang C, Jiang B B, Shi Y, Wang Q, Dong C 2015 J. Alloys Compd. 652 63Google Scholar

    [39]

    郝家苗 2020 硕士学位论文 (大连: 大连理工大学)

    Hao J M 2020 M. S. Thesis (Dalian: Dalian University of Technology) (in chinese)

    [40]

    Chen L Q 2002 Annual Review of Materials Research 32 113

    [41]

    Kuang W W, Wang H F, Li X, Zhang J B, Qing Z, Zhao Y H 2018 Acta Mater. 159 16Google Scholar

    [42]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [43]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [44]

    Kitashima T, Harada H. 2009 Acta Mater. 57 2020Google Scholar

    [45]

    Tsukada Y, Koyama T, Murata Y, Miura N, Kondo Y 2014 Comput. Mater. Sci. 83 371Google Scholar

    [46]

    Deng S, Chen W M, Zhong J, Zhang L J, Du Y, Chen L 2017 Calphad 56 230Google Scholar

    [47]

    Allen S, Cahn J W 1992 Acta Metall. 20 423

    [48]

    Chen H L, Mao H, Chen Q 2018 Mater. Chem. Phys. 210 279Google Scholar

    [49]

    Luo Z, Du Y, Liu Y L, Tang S, Pan Y F, Mao H, Peng Y B, Liu W S, Liu Z K 2018 Calphad 63 190Google Scholar

    [50]

    Li Y S, Zhu H, Zhang L, Cheng X L 2012 J. Nucl. Mater. 429 13Google Scholar

    [51]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268Google Scholar

    [52]

    Neumann G, Tuijn C 2011 Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data Elsevier

    [53]

    Khachaturian A G 1983 Acta Crystallogr.

    [54]

    Shen C, Wang Y 2005 Handb. Mater. Model.

    [55]

    Koyama T, Hashimoto K, Onodera H 2006 Mater. Trans. 47 2765Google Scholar

    [56]

    Cale W F, Totemeier T C 2003 Smithells Metals Reference Book (Oxford: Butter worth-Heinemann)

    [57]

    Sonkusare R, Swain A, Rahul M R, Samal S, Gurao N P, Biswas k, Singh S S, Nayan N 2019 Mater. Sci. Eng., A 759 415Google Scholar

    [58]

    龚子杰, 李春辉, 李晓宇, 李炜, 陈伟, 赵东国, 刘润芳 2022 精密成形工程 14 83Google Scholar

    Gong Z J, Li C H, Li X N, Li W, Chen W, Zhao D G, Liu R F 2022 J. Netshape Form. Eng. 14 83Google Scholar

    [59]

    Takeuchi A, Inoue A 2007 Mater. Trans., JIM 41 1372

    [60]

    Li B, Zhang L, Li C L, Li Q L, Chen J, Shun G G, Weng Y Q, Xu B, Hu S Y, Liu W 2018 J. Nucl. Mater. 507 59Google Scholar

    [61]

    程一丹 2018 硕士学位论文 (西安: 西安工业大学)

    Cheng Y D 2018 M. S. Thesis (Xi'an: Xi'an Technological University) (in Chinese)

    [62]

    王晓姣 2016 博士学位论文 (上海: 上海大学)

    Wang X J 2016 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese)

    [63]

    Jiao Z B, Luan J H, Miller M K, Yu C Y, Liu C T 2015 Acta Mater. 84 283Google Scholar

    [64]

    Isheim D, Kolli R P, Fine M E, Seidman D N 2006 Scr. Mater. 55 35Google Scholar

    [65]

    Russell K C, Brown L M 1972 Acta Metall. 20 969Google Scholar

    [66]

    Hahn S I, Hwang S J 2009 J. Alloys Compd. 483 207Google Scholar

    [67]

    Dinsdale A T 1991 Calphad 15 317Google Scholar

    [68]

    Liu X Y, Wang G, Hu Y, Ji Y Z, Rong Y M, Hu Y Z, Chen L Q 2021 Mater. Sci. Eng., A. 814 141223Google Scholar

  • [1] 刘钟磊, 曹津铭, 王智, 赵宇宏. 相场法探究铁电体涡旋拓扑结构与准同型相界.  , 2023, 72(3): 037702. doi: 10.7498/aps.72.20221898
    [2] 郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华. 金属基复合材料原位反应相场模型.  , 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [3] 蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华. 相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理.  , 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [4] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能.  , 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [5] 杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静. Fe-Cr合金辐照空洞微结构演化的相场法模拟.  , 2021, 70(5): 054601. doi: 10.7498/aps.70.20201457
    [6] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制.  , 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [7] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究.  , 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [8] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究.  , 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [9] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长.  , 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [10] 宗亚平, 王明涛, 郭巍. 再结晶和外力场下第二相析出的相场法模拟.  , 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [11] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟.  , 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [12] 陈玉娟, 陈长乐. 相场法模拟对流速度对上游枝晶生长的影响.  , 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [13] 冯 力, 王智平, 路 阳, 朱昌盛. 二元合金多晶粒的枝晶生长的等温相场模型.  , 2008, 57(2): 1084-1090. doi: 10.7498/aps.57.1084
    [14] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究.  , 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [15] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长.  , 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [16] 张玉祥, 王锦程, 杨根仓, 周尧和. 相场法模拟弹性场对沉淀相变组织演化及相平衡成分的影响.  , 2006, 55(5): 2433-2438. doi: 10.7498/aps.55.2433
    [17] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟.  , 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [18] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟.  , 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
    [19] 龙文元, 蔡启舟, 陈立亮, 魏伯康. 二元合金等温凝固过程的相场模型.  , 2005, 54(1): 256-262. doi: 10.7498/aps.54.256
    [20] 刘红. 双轴向列相液晶的表面能.  , 2002, 51(12): 2786-2792. doi: 10.7498/aps.51.2786
计量
  • 文章访问数:  5574
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-26
  • 修回日期:  2023-01-30
  • 上网日期:  2023-02-09
  • 刊出日期:  2023-04-05

/

返回文章
返回
Baidu
map