搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转二维激子极化激元凝聚涡旋叠加态的动力学特性

吴昊 任元 刘通 王元钦 刑朝洋

引用本文:
Citation:

旋转二维激子极化激元凝聚涡旋叠加态的动力学特性

吴昊, 任元, 刘通, 王元钦, 刑朝洋

Rotational dynamics characteristics of planar superimposed vortices of exciton polariton condensates

Wu Hao, Ren Yuan, Liu Tong, Wang Yuan-Qin, Xing Chao-Yang
PDF
HTML
导出引用
  • 研究了二维激子极化激元凝聚正反涡旋叠加态在半导体微腔极化激元波色爱因斯坦凝聚(Bose–Einstein condensate, BEC)体系旋转情形下的稳定性和动力学特性. 在体系旋转情形下对单分量Gross-Pitaevskii方程进行重构, 利用四阶龙格库塔方法和时域有限差分方法构建数值模型. 利用实时演化方法研究在体系旋转的情况下, 不同拓扑荷数的正反涡旋叠加态的实时演化过程及稳态局域粒子数和体系旋转角速率之间的关系. 研究了涡旋叠加态激发区域的旋转速率与体系旋转速率的关系, 并阐明了体系的旋转速率对涡旋叠加态相位稳定性的影响机理.研究表明, 半导体微腔极化激元BEC体系的旋转速率对激子极化激元凝聚叠加态的演化过程及其动力学特性有重要影响.
    The gyroscope established on quantization vortices formed from exciton-polariton Bose-Einstein condensate has important potential applications in the field of quantum guidance. Thus, we assume a concept of quantum gyroscope based on Sagnac effect of the superposition states of quantum vortices existing in exciton-polariton condensates. To study the gyroscopic effect of superimposed vortices, which is the core issue of the project, it is essential to study the dynamic characteristics in the case of system rotating. Therefore, in this paper, the stability and dynamics of positive-negative vortex superposed states of two-dimensional exciton-polariton condensate in the disordered potential are studied under the rotation of the semiconductor microcavity, thereby laying a foundation for studying the gyroscopic effect of the superposed state of exciton-polariton condensates in the semiconductor microcavity. On the basis of reconstructing the mono-component Gross-Pitaevskii equation under the rotational situation, a numerical model with Coriolis items is constructed by the Runge-Kutta method and the finite difference time domain method, which is capable of depicting the rotation of the system. Moreover, the real-time evolution process of positive-negative vortex superposed states with different topological charges and the relationship between the number of steady-state local particles and the angular speed of the rotation of semiconductor microcavity are investigated by the real-time evolution method when the semiconductor microcavity is rotated. In the meantime, the relationship between the rotation speed in the excitation of vortex superposed states and the rotation speed of the semiconductor microcavity is also studied in the presence of the influence of the rotation speed of the semiconductor microcavity on the phase stability of vortex superposed states. According to the study, the rotation speed of the semiconductor microcavity has a significant influence on the evolution process and dynamic characteristics of vortex superposed states of exciton-polariton condensates. The rotation of the exciton-polariton system will accelerate the evolution of superimposed vortices, and overly rapid rotary rate will signalize the fluctuation of the local particle number thus the system unstability occurs. Moreover, along with the system rotation, the exciton-polariton superimposed vortices begin to rotate when the evolution approaches to saturation. It is noticeable that the angular acceleration of superimposed vortices is positively associated with the system rotary rate. Further, the topological charge has a significant influence on the rotation rate of exciation region of superposition state of vortices that it rotates more slowly when the topological charge increases but lower evolution stability simultaneously. These findings possess important guiding significance for establishing the quantum gyroscope in the future.
      通信作者: 任元, renyuan_823@aliyun.com
    • 基金项目: 国防科技创新特区项目、国家自然科学基金(批准号: 11772001, 61805283)和北京市青年拔尖人才支持计划(批准号: 2017000026833ZK23)资助的课题
      Corresponding author: Ren Yuan, renyuan_823@aliyun.com
    • Funds: Project supported by the Program for National Defense Science and Technology Innovation Special Zone of China, the National Natural Science Foundation of China (Grant Nos. 11772001, 61805283), and the Youth Top-Notch Talent Support Program of Beijing, China (Grant No. 2017000026833ZK23)
    [1]

    Zhang Y Y, Zou B 2012 Phys. Lett. A 376 3332Google Scholar

    [2]

    Shelykh I A, Rubo Y G, Kavokin A V 2007 Superlattices Microstruct. 41 313Google Scholar

    [3]

    Abdalla A S, Bingsuo Z, Ren Y, Liu T, Zhang Y Y 2018 Opt. Express 26 22273Google Scholar

    [4]

    刘妮 2013 62 013402Google Scholar

    Liu N 2013 Acta Phys. Sin. 62 013402Google Scholar

    [5]

    张用友, 金国钧 2009 物理 38 536

    Zhang Y Y, Jin G J 2009 Physics 38 536 (in Chinese)

    [6]

    刘文楷, 安艳伟, 林世鸣 2005 光子学报 34 793Google Scholar

    Liu W K, An Y W, Lin S M, Zhang C S, Zhang C N 2005 Acta Photon. Sin. 34 793Google Scholar

    [7]

    Liu W K, Lin S M, An Y W 2004 J. Semicond. 025 1319Google Scholar

    [8]

    Lidzey D G, Bradley D D C, Skolnick M S, Virgili T, Walker S, Whittaker D M 1998 Nature 395 53Google Scholar

    [9]

    Kéna-Cohen S, Davanço M, Forrest S R 2008 Phys. Rev. Lett. 101 116401Google Scholar

    [10]

    Kéna-Cohen S, Forrest S R 2010 Nat. Photonics 4 371Google Scholar

    [11]

    Das A, Heo J, Jankowski M, Guo W, Zhang L, Deng H 2011 Phys. Rev. Lett. 107 227Google Scholar

    [12]

    Daskalakis K S, Maier S A, Murray R, S KénaCohen 2014 Nat. Mater. 13 271Google Scholar

    [13]

    Plumhof J D, Stöferle T, Mai L, Scherf U, Mahrt R F 2014 Nat. Mater. 13 247Google Scholar

    [14]

    Gao T, Estrecho E, Bliokh K Y, Liew T C H, Fraser M D, Brodbeck S 2015 Nature 526 554Google Scholar

    [15]

    Khan S, Türeci H E 2016 Phys. Rev. A 94 053856Google Scholar

    [16]

    Ma X, Berger B, Assmann M, Driben R, Meier T, Schneider C 2020 Nat. Commun. 11 897Google Scholar

    [17]

    Ma X K, Schumacher S 2017 Phys. Rev. B 95 235301Google Scholar

    [18]

    Chen T W, Hsieh W F, Cheng S C 2014 Frontiers in Optics 2014 Tucson, Arizona United States, October 19−23, 2014 pFW5C.4

    [19]

    Iii F I M, Dowling J P, Dai W, Byrnes T 2015 Phys. Rev. A 93 053603Google Scholar

    [20]

    Kwon M S, Oh B Y, Gong S H, Kim J H, Kang H K, Kang S 2019 Phys. Rev. Lett. 122 045302Google Scholar

    [21]

    Zambon N C, St-Jean P, Lemaître A, Harouri A, Gratiet L L, Sagnes I 2018 Opt. Lett. 44 4531Google Scholar

    [22]

    任元 中国专利 2016103181578 [2019-2-1]

    Ren Y Chinese Patent 2016103181578 [2019-2-1] (in Chinese)

    [23]

    Thanvanthri S, Kapalek K T, Dowling J P 2012 J. Mod. Opt. 59 1180Google Scholar

    [24]

    Padhi B, Duboscq R, Niranjan A, Soni R 2015 Eur. Phys. J. B 88 1Google Scholar

    [25]

    陈海军, 任元, 王华 2019 原子与分子 36 124Google Scholar

    Chen H J, Ren Y, Wang H 2019 J. At. Mol. Phys. 36 124Google Scholar

    [26]

    张用友 2009 博士学位论文 (南京: 南京大学)

    Zhang Y Y 2009 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [27]

    Kartashov Y V, Zezyulin D A 2019 Opt. Lett. 44 4805Google Scholar

  • 图 1  旋转状态下的激子极化激元涡旋叠加态体系

    Fig. 1.  System of exciton polariton condensates on the rotational state.

    图 2  $ l = \pm 2$时不同旋转角速率对激发场分布的影响 (a) $ \varOmega = 0$, $ t=80\hbar /{\rm{meV}}$; (b) $ \varOmega = 4.{\rm{0}} \times {10^{ - 7}}$, $ t=80\hbar /{\rm{meV}}$; (c) $\varOmega = 8.{\rm{0}} \times {10^{ - 7}}$, $ t=80\hbar /{\rm{meV}}$; (d) $ \varOmega = 1.2 \times {10^{ - {\rm{6}}}}$, $ t=80\hbar /{\rm{meV}}$

    Fig. 2.  Effects of different angular velocities of the rotation on the exciton field when $l = \pm 2$: (a) $\varOmega = 0$, $ t=80\hbar /{\rm{meV}}$; (b) $\varOmega = 4.{\rm{0}} \times {10^{ - 7}}$, $ t=80\hbar /{\rm{meV}}$; (c) $\varOmega = 8.{\rm{0}} \times {10^{ - 7}}$, $ t=80\hbar /{\rm{meV}}$; (d) $\varOmega = 1.2 \times {10^{ - {\rm{6}}}}$, $ t=80\hbar /{\rm{meV}}$.

    图 3  转动角速率与涡旋叠加态演化的关系 (a) 当${\varOmega _1} = 1.{\rm{0}} \times {10^{ - 5}}$, $ t=80\hbar /{\rm{meV}}$时, 激子极化激元涡旋叠加态的相位分布; (b) 当${\varOmega _9} = {\rm{9}}.{\rm{0}} \times {10^{ - 5}}$, $ t=80\hbar /{\rm{meV}}$时, 激子极化激元涡旋叠加态的相位分布; (c) 当体系处于不同转速时激发区域内局域粒子数随时间的变化

    Fig. 3.  The relationship between angular velocities of the rotation and the evolution of superposition state of vortexes: (a) The phase distribution of the superposition state of exciton polariton vortexes when ${\varOmega _1} = 1.{\rm{0}} \times {10^{ - 5}}$and $ t=80\hbar /{\rm{meV}}$; (b) the phase distribution of superposition state of exciton polariton vortexes when ${\varOmega _9} = {\rm{9}}.{\rm{0}} \times {10^{ - 5}}$ and $ t=80\hbar /{\rm{meV}}$; (c) the description curve of the relationship between time and quasi-particle number on various speeds of rotation of the system.

    图 4  旋转状态下不同时刻的激子场分布 (a) $ t=0\hbar /{\rm{meV}}$; (b) $ t=15\hbar /{\rm{meV}}$; (c) $ t=30\hbar /{\rm{meV}}$; (d) $ t=45\hbar /{\rm{meV}}$; (e) $t= 60\hbar /{\rm{meV}}$; (f) $ t=75\hbar /{\rm{meV}}$

    Fig. 4.  The exciton field distribution at different moments in the rotational state: (a) $ t=0\hbar /{\rm{meV}}$; (b) $ t=15\hbar /{\rm{meV}}$; (c) $t= 30\hbar /{\rm{meV}}$; (d) $ t=45\hbar /{\rm{meV}}$; (e) t $t= 60\hbar /{\rm{meV}}$; (f) $ t=75\hbar /{\rm{meV}}$.

    图 5  激子极化激元涡旋叠加态瞬时转动角速率与体系转速的关系

    Fig. 5.  The relationship between the instantaneous angular rate of the superposition state of exciton polariton vortexes and the rotate speed of the system.

    图 6  转动角速率对不同拓扑荷数激子极化激元涡旋叠加态的影响 (a)体系旋转角速率$\varOmega \in (2.{\rm{0}} \times {{10}^{ - 7}}, 1.{\rm{0}} \times {{10}^{ - 6}})$, t = 80ћ/meV时刻, 拓扑荷数分别为$l = \pm 4$$l = \pm 12$的涡旋叠加态相对于初态转过的角度; (b)不同拓扑荷数情况下, 体系旋转角速率对演化过程产生的影响

    Fig. 6.  Effects of the angular velocities on the superposition state of exciton polariton vortexes with different topological charge number: (a) Angle of rotation of superposition state vortexes to the initial state at the moment of t = 80ћ/meV with different topological charge of $l = \pm 4$ and $l = \pm 12$ in the angular rate range of $\varOmega \in (2.{\rm{0}} \times {{10}^{ - 7}}, 1.{\rm{0}} \times {{10}^{ - 6}} )$; (b) effect of the system angular rate on the evolution process with different topological charges.

    Baidu
  • [1]

    Zhang Y Y, Zou B 2012 Phys. Lett. A 376 3332Google Scholar

    [2]

    Shelykh I A, Rubo Y G, Kavokin A V 2007 Superlattices Microstruct. 41 313Google Scholar

    [3]

    Abdalla A S, Bingsuo Z, Ren Y, Liu T, Zhang Y Y 2018 Opt. Express 26 22273Google Scholar

    [4]

    刘妮 2013 62 013402Google Scholar

    Liu N 2013 Acta Phys. Sin. 62 013402Google Scholar

    [5]

    张用友, 金国钧 2009 物理 38 536

    Zhang Y Y, Jin G J 2009 Physics 38 536 (in Chinese)

    [6]

    刘文楷, 安艳伟, 林世鸣 2005 光子学报 34 793Google Scholar

    Liu W K, An Y W, Lin S M, Zhang C S, Zhang C N 2005 Acta Photon. Sin. 34 793Google Scholar

    [7]

    Liu W K, Lin S M, An Y W 2004 J. Semicond. 025 1319Google Scholar

    [8]

    Lidzey D G, Bradley D D C, Skolnick M S, Virgili T, Walker S, Whittaker D M 1998 Nature 395 53Google Scholar

    [9]

    Kéna-Cohen S, Davanço M, Forrest S R 2008 Phys. Rev. Lett. 101 116401Google Scholar

    [10]

    Kéna-Cohen S, Forrest S R 2010 Nat. Photonics 4 371Google Scholar

    [11]

    Das A, Heo J, Jankowski M, Guo W, Zhang L, Deng H 2011 Phys. Rev. Lett. 107 227Google Scholar

    [12]

    Daskalakis K S, Maier S A, Murray R, S KénaCohen 2014 Nat. Mater. 13 271Google Scholar

    [13]

    Plumhof J D, Stöferle T, Mai L, Scherf U, Mahrt R F 2014 Nat. Mater. 13 247Google Scholar

    [14]

    Gao T, Estrecho E, Bliokh K Y, Liew T C H, Fraser M D, Brodbeck S 2015 Nature 526 554Google Scholar

    [15]

    Khan S, Türeci H E 2016 Phys. Rev. A 94 053856Google Scholar

    [16]

    Ma X, Berger B, Assmann M, Driben R, Meier T, Schneider C 2020 Nat. Commun. 11 897Google Scholar

    [17]

    Ma X K, Schumacher S 2017 Phys. Rev. B 95 235301Google Scholar

    [18]

    Chen T W, Hsieh W F, Cheng S C 2014 Frontiers in Optics 2014 Tucson, Arizona United States, October 19−23, 2014 pFW5C.4

    [19]

    Iii F I M, Dowling J P, Dai W, Byrnes T 2015 Phys. Rev. A 93 053603Google Scholar

    [20]

    Kwon M S, Oh B Y, Gong S H, Kim J H, Kang H K, Kang S 2019 Phys. Rev. Lett. 122 045302Google Scholar

    [21]

    Zambon N C, St-Jean P, Lemaître A, Harouri A, Gratiet L L, Sagnes I 2018 Opt. Lett. 44 4531Google Scholar

    [22]

    任元 中国专利 2016103181578 [2019-2-1]

    Ren Y Chinese Patent 2016103181578 [2019-2-1] (in Chinese)

    [23]

    Thanvanthri S, Kapalek K T, Dowling J P 2012 J. Mod. Opt. 59 1180Google Scholar

    [24]

    Padhi B, Duboscq R, Niranjan A, Soni R 2015 Eur. Phys. J. B 88 1Google Scholar

    [25]

    陈海军, 任元, 王华 2019 原子与分子 36 124Google Scholar

    Chen H J, Ren Y, Wang H 2019 J. At. Mol. Phys. 36 124Google Scholar

    [26]

    张用友 2009 博士学位论文 (南京: 南京大学)

    Zhang Y Y 2009 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [27]

    Kartashov Y V, Zezyulin D A 2019 Opt. Lett. 44 4805Google Scholar

  • [1] 黄轶凡, 梁兆新. 激子极化激元凝聚体中的二维亮孤子.  , 2023, 72(10): 100505. doi: 10.7498/aps.72.20230425
    [2] 翟艺伟, 李旺. 基于SSA-BP网络模型的Hong-Ou-Mandel干涉时延测量研究及其在量子陀螺仪中的应用.  , 2023, 72(13): 138503. doi: 10.7498/aps.72.20230283
    [3] 邢健崇, 张文静, 杨涛. 玻色-爱因斯坦凝聚中的非正则涡旋态及其动力学.  , 2023, 72(10): 100306. doi: 10.7498/aps.72.20222289
    [4] 李斌, 张国峰, 陈瑞云, 秦成兵, 胡建勇, 肖连团, 贾锁堂. 单量子点光谱与激子动力学研究进展.  , 2022, 71(6): 067802. doi: 10.7498/aps.71.20212050
    [5] 熊振宇, 蔡远文, 吴昊, 刘通, 刘政良, 任元. 环形泵浦激发下微腔激子极化激元的涡旋叠加态演化分析.  , 2021, 70(24): 240304. doi: 10.7498/aps.70.20210971
    [6] 符晓倩, 吕思远, 王鹿霞. 双分子链中非线性多激子态的动力学研究.  , 2020, 69(19): 197301. doi: 10.7498/aps.69.20200104
    [7] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法.  , 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [8] 董毕远, 徐志君. 多个子玻色-爱因斯坦凝聚气体膨胀叠加形成的量子涡旋现象研究.  , 2018, 67(1): 010501. doi: 10.7498/aps.67.20171708
    [9] 朱孟龙, 董玉兰, 钟海政, 何军. CdTe量子点的室温激子自旋弛豫动力学.  , 2014, 63(12): 127202. doi: 10.7498/aps.63.127202
    [10] 何雪梅, 吕百达. 部分相干双曲正弦-Gauss涡旋光束叠加形成的合成相干涡旋在非 Kolmogorov 大气湍流中的动态演化.  , 2012, 61(5): 054201. doi: 10.7498/aps.61.054201
    [11] 文洪燕, 杨杨, 韦联福. 光学微腔中少光子数叠加态的耗散动力学.  , 2012, 61(18): 184206. doi: 10.7498/aps.61.184206
    [12] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制.  , 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [13] 程 科, 闫红卫, 吕百达. 部分相干涡旋光束叠加场中的合成相干涡旋及其动态传输.  , 2008, 57(8): 4911-4920. doi: 10.7498/aps.57.4911
    [14] 刘普生, 吕百达. 拉盖尔-高斯模叠加而成的部分相干光的相干涡旋.  , 2007, 56(5): 2623-2628. doi: 10.7498/aps.56.2623
    [15] 余晓敏, 梁国栋, 钟艳花. 极化激元系统时间演化的量子涨落特性和非经典统计行为.  , 2006, 55(5): 2128-2137. doi: 10.7498/aps.55.2128
    [16] 刘承师, 马本堃, 王立民. 交变电场驱动下耦合双量子点中激子的动力学行为.  , 2003, 52(8): 2020-2026. doi: 10.7498/aps.52.2020
    [17] 周世平, 瞿海, 廖红印. 高温超导混合配对态与磁通涡旋格子.  , 2002, 51(10): 2355-2361. doi: 10.7498/aps.51.2355
    [18] 张希清, 王永生, 徐 征, 侯延冰, 王振家, 徐叙瑢, Z.K.TANG, 汪河州, 李伟良, 赵福利, 蔡志刚, 周建英. CdTe/CdZnTe多量子阱激子复合动力学性质的研究.  , 1999, 48(1): 180-185. doi: 10.7498/aps.48.180
    [19] 黄洪斌. 半导体中激子的叠加态及其复合辐射.  , 1993, 42(7): 1141-1148. doi: 10.7498/aps.42.1141
    [20] 黄洪斌. 半导体中激子的叠加态及其复合辐射.  , 1991, 40(7): 1141-1148. doi: 10.7498/aps.40.1141
计量
  • 文章访问数:  5863
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 修回日期:  2020-07-14
  • 上网日期:  2020-12-02
  • 刊出日期:  2020-12-05

/

返回文章
返回
Baidu
map