搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学微腔中少光子数叠加态的耗散动力学

文洪燕 杨杨 韦联福

引用本文:
Citation:

光学微腔中少光子数叠加态的耗散动力学

文洪燕, 杨杨, 韦联福

Dissipative dynamics of few-photon superposition states in optical microcavity

Wen Hong-Yan, Yang Yang, Wei Lian-Fu
PDF
导出引用
  • 通过考察耗散光学腔中少光子数叠加态的Wigner函数随时间 的变化行为, 揭示其非经典特性的动力学演化. 结果表明, 初始时Wigner函数为负的少光子数叠加态, 在耗散过程中其负性逐渐减小 直至消失, 并最后达到一个稳定的正值. 但这并不意味着耗散量子态非经典特性的完全消失. 实际上, 作为非经典特性的另一个重要参量, 光子的二阶关联函数g(2)(0) (g(2)(0)g(2A)(0)却是一个随着耗散而改变的物理参量, 从而可以用于描述光学微腔中光量子态的耗散动力学行为. 最后, 我们给出一个在实验上如何制备少光子数叠加态并对其Wigner函数进行探测的方案.
    Detections and manipulations of quantum optical state at single-photon level have received much attention in the current experiments. Here, by numerically calculating the time-evolved Wigner functions, we investigate the dynamics of the typical non-classical state, i.e., few-photon superposition states in a dissipating optical microcavity. It is shown that the negativity of their Wigner function vanishes with dissipation. But this does not imply that all the non-classical features of the dissipative quantum state disappear. In fact, it is shown that the value of the second-order correlation function g(2)(0) (which serves usually as the standard criterion of a typical non-classical effect, i.e., the anti-bunching of photons, if g(2)(0)g(2A)(0) varies with the cavity dissipation and thus could be used to describe the physical effects of the dissipative cavity. Finally, we discuss the experimental feasibility of our proposal with a practically-existing cavity QED system.
    • 基金项目: 国家自然科学基金(批准号: 90921010, 11174373)资助的课题.
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 90921010, 11174373).
    [1]

    Wigner E P 1932 Phys. Rev. 40 749

    [2]

    Buzek V, Knight P L 1995 Progress in Optics in: Wolf E ed Vol. XXXIV, Edited by (Amsterdam: North Holland), and Refs. Therein.

    [3]

    Yang Y, Li F L 2009 J. Opt. Soc. Am. B 26 830

    [4]

    Hillery M, O' Connell R F, Scully M O, Wigner E P 1984 Phys. Rep. 106 121

    [5]

    Wei L F, Wang S J, Jie Q L 1997 Chin. Sci. Bull. 42 1686

    [6]

    Yang Q Y, Sun J W, Wei L F, Ding L E 2005 Acta Phys. Sin. 54 2704 (in Chinese) [杨庆怡, 孙敬文, 韦联福, 丁良恩 2005 54 2704]

    [7]

    Li S B, Zou X B, Guo G C 2007 Phys. Rev. A 75 045801

    [8]

    Zhang M, Jia H Y 2008 Acta Phys. Sin. 57 880 (in Chinese) [张淼, 贾焕玉 2008 57 880]

    [9]

    Hu L Y, Fan H Y 2010 J. Opt. Soc. Am. B 27 286

    [10]

    Lan H J, Pang H F, Wei L F 2009 Acta Phys. Sin. 58 8281 (in Chinese) [蓝海江, 庞华锋, 韦联福 2009 58 8281]

    [11]

    Biswas A, Agarwal G S 2007 Phys. Rev. A 75 032104

    [12]

    Xu X X, Hu L Y, Fan H Y 2010 Opt. Commun. 283 1801

    [13]

    Hu L Y, Xu X X, Wang Z S, Xu X F 2010 Phys. Rev. A 82 043842

    [14]

    de Queiros I P, Cardoso W B, de Alemida N G 2007 J. Phys. B: At. Mol. Opt. Phys. 40 21

    [15]

    Buller G S, Collins R J 2010 Meas. Sci. Technol. 21 012002

    [16]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

    [17]

    Fan H Y, Hu L Y 2009 Opt. Commun. 282 4379

    [18]

    Gradshteyn I S, Ryzhik I M 1965 Table of Integrals, Series and Products (New York: Academic)

    [19]

    William L H 1973 Quantum Statistical Properties of Radiation (New York: John Wiley)

    [20]

    Gardiner C W, Zoller P 2000 Quantum Noise (Berlin: Springer)

    [21]

    Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer-Verlag)

    [22]

    Wüunsche A 2001 J. Comput. Appl. Math. 133 665

    [23]

    Wüunsche A 2000 J. Phys. A: Math. Gen. 33 1603

    [24]

    Dodono'v V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1

    [25]

    Agarwal G S, Tara K 1992 Phys. Rev. A 46 485

    [26]

    Lutterbach L G, Davidovich L 1997 Phys. Rev. Lett. 78 2547

    [27]

    Cahill K E, Glauber R J 1969 Phys. Rev. 177 1882

  • [1]

    Wigner E P 1932 Phys. Rev. 40 749

    [2]

    Buzek V, Knight P L 1995 Progress in Optics in: Wolf E ed Vol. XXXIV, Edited by (Amsterdam: North Holland), and Refs. Therein.

    [3]

    Yang Y, Li F L 2009 J. Opt. Soc. Am. B 26 830

    [4]

    Hillery M, O' Connell R F, Scully M O, Wigner E P 1984 Phys. Rep. 106 121

    [5]

    Wei L F, Wang S J, Jie Q L 1997 Chin. Sci. Bull. 42 1686

    [6]

    Yang Q Y, Sun J W, Wei L F, Ding L E 2005 Acta Phys. Sin. 54 2704 (in Chinese) [杨庆怡, 孙敬文, 韦联福, 丁良恩 2005 54 2704]

    [7]

    Li S B, Zou X B, Guo G C 2007 Phys. Rev. A 75 045801

    [8]

    Zhang M, Jia H Y 2008 Acta Phys. Sin. 57 880 (in Chinese) [张淼, 贾焕玉 2008 57 880]

    [9]

    Hu L Y, Fan H Y 2010 J. Opt. Soc. Am. B 27 286

    [10]

    Lan H J, Pang H F, Wei L F 2009 Acta Phys. Sin. 58 8281 (in Chinese) [蓝海江, 庞华锋, 韦联福 2009 58 8281]

    [11]

    Biswas A, Agarwal G S 2007 Phys. Rev. A 75 032104

    [12]

    Xu X X, Hu L Y, Fan H Y 2010 Opt. Commun. 283 1801

    [13]

    Hu L Y, Xu X X, Wang Z S, Xu X F 2010 Phys. Rev. A 82 043842

    [14]

    de Queiros I P, Cardoso W B, de Alemida N G 2007 J. Phys. B: At. Mol. Opt. Phys. 40 21

    [15]

    Buller G S, Collins R J 2010 Meas. Sci. Technol. 21 012002

    [16]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

    [17]

    Fan H Y, Hu L Y 2009 Opt. Commun. 282 4379

    [18]

    Gradshteyn I S, Ryzhik I M 1965 Table of Integrals, Series and Products (New York: Academic)

    [19]

    William L H 1973 Quantum Statistical Properties of Radiation (New York: John Wiley)

    [20]

    Gardiner C W, Zoller P 2000 Quantum Noise (Berlin: Springer)

    [21]

    Puri R R 2001 Mathematical Methods of Quantum Optics (Berlin: Springer-Verlag)

    [22]

    Wüunsche A 2001 J. Comput. Appl. Math. 133 665

    [23]

    Wüunsche A 2000 J. Phys. A: Math. Gen. 33 1603

    [24]

    Dodono'v V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1

    [25]

    Agarwal G S, Tara K 1992 Phys. Rev. A 46 485

    [26]

    Lutterbach L G, Davidovich L 1997 Phys. Rev. Lett. 78 2547

    [27]

    Cahill K E, Glauber R J 1969 Phys. Rev. 177 1882

  • [1] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析.  , 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [2] 张科, 李兰兰, 任刚, 杜建明, 范洪义. 量子扩散通道中Wigner算符的演化规律.  , 2020, 69(9): 090301. doi: 10.7498/aps.69.20200106
    [3] 张娜娜, 李淑静, 闫红梅, 何亚亚, 王海. 实验条件不完美对薛定谔猫态制备的影响.  , 2018, 67(23): 234203. doi: 10.7498/aps.67.20180381
    [4] 林惇庆, 朱泽群, 王祖俭, 徐学翔. 相位型三头薛定谔猫态的量子统计属性.  , 2017, 66(10): 104201. doi: 10.7498/aps.66.104201
    [5] 范洪义, 梁祖峰. 相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径.  , 2015, 64(5): 050301. doi: 10.7498/aps.64.050301
    [6] 梁修东, 台运娇, 程建民, 翟龙华, 许业军. 量子相空间分布函数与压缩相干态表示间的变换关系.  , 2015, 64(2): 024207. doi: 10.7498/aps.64.024207
    [7] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用.  , 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [8] 张浩亮, 贾芳, 徐学翔, 郭琴, 陶向阳, 胡利云. 光子增减叠加相干态在热环境中的退相干.  , 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [9] 徐学翔, 张英孔, 张浩亮, 陈媛媛. N00N态的Wigner函数及N00N态作为输入的量子干涉.  , 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [10] 袁洪春, 徐学翔. 单双模连续压缩真空态及其量子统计性质.  , 2012, 61(6): 064205. doi: 10.7498/aps.61.064205
    [11] 宋军, 范洪义, 周军. 双模压缩数态光场的Wigner函数及其特性.  , 2011, 60(11): 110302. doi: 10.7498/aps.60.110302
    [12] 余海军, 杜建明, 张秀兰. 一类特殊单模压缩态的Wigner函数.  , 2011, 60(9): 090305. doi: 10.7498/aps.60.090305
    [13] 徐学翔, 袁洪春, 胡利云. 广义压缩粒子数态的非经典性质及其退相干.  , 2010, 59(7): 4661-4671. doi: 10.7498/aps.59.4661
    [14] 宋军, 范洪义. Schwinger Bose实现下自旋相干态Wigner函数的特性分析.  , 2010, 59(10): 6806-6813. doi: 10.7498/aps.59.6806
    [15] 蓝海江, 庞华锋, 韦联福. 多光子激发相干态的Wigner函数.  , 2009, 58(12): 8281-8288. doi: 10.7498/aps.58.8281
    [16] 孟祥国, 王继锁. 新的奇偶非线性相干态及其非经典性质.  , 2007, 56(4): 2154-2159. doi: 10.7498/aps.56.2154
    [17] 孟祥国, 王继锁, 梁宝龙. 增光子奇偶相干态的Wigner函数.  , 2007, 56(4): 2160-2167. doi: 10.7498/aps.56.2160
    [18] 杨庆怡, 孙敬文, 韦联福, 丁良恩. 增、减光子奇偶相干态的Wigner函数.  , 2005, 54(6): 2704-2709. doi: 10.7498/aps.54.2704
    [19] 张智明. 利用微脉塞重构腔场的Wigner函数.  , 2004, 53(1): 70-74. doi: 10.7498/aps.53.70
    [20] 陶向阳, 刘三秋, 聂义友, 傅传鸿. Kerr效应和虚光场对三能级原子-场系统光子反聚束效应的影响.  , 2000, 49(8): 1471-1477. doi: 10.7498/aps.49.1471
计量
  • 文章访问数:  7075
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-11
  • 修回日期:  2012-03-08
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map