-
一些实验表明, 实际大气会偏离理想Kolmogorov模型. 本文基于广义Huygens-Fresnel原理和Toselli等提出的非Kolmogorov湍流模型, 推导出部分相干双曲正弦-Gauss (HSG)涡旋光束通过非Kolmogorov大气湍流的解析传输公式, 并用以对两束部分相干HSG涡旋光束相干叠加和非相干叠加形成的合成相干涡旋在非Kolmogorov大气湍流中的动态演化进行了研究. 结果表明, 合成光束平均光强的演化过程与非Kolmogorov湍流的广义指数, 源平面上叠加涡旋光束拓扑电荷的符号, 以及叠加方式有关. 合成相干涡旋在非Kolmogorov大气湍流中传输时会出现移动、产生和湮灭. 广义指数, 拓扑电荷符号, 以及叠加方式都会影响其演化行为. 最后, 将本文所得结果与相关文献做了比较.
-
关键词:
- 非Kolmogorov大气湍流 /
- 合成相干涡旋 /
- 部分相干双曲-正弦Gauss涡旋光束
Some experiments show that the practical atmosphere deviates from ideal Kolmogorov model. In this paper, based on the extended Huygens-Fresnel principle and the non-Kolmogorov turbulence model proposed by Toselli et al., the analytical expression for the propagation of partially coherent hyperbolic-sine-Gaussian vortex beams through non-Kolmogorov atmospheric turbulence is derived and used to study the dynamic evolutions of composite coherence vortices formed by coherent and incoherent superpositions of two partially coherent hyperbolic-sine-Gaussian vortex beams in non-Kolmogorov atmospheric turbulence. It is shown that the evolution process of the average intensity of the superimposed beam depends on the general exponent of the non-Kolmogorov turbulence, the sign of the topological charge of the superimposed vortex beam in the source plane, and superposition scheme. The motion, the creation and the annihilation of composite coherence vortices may take place upon propagation through non-Kolmogorov turbulence, and the general exponent , sign of the topological charge and superposition scheme affect the evolution behavior. Finally, the results are compared with those of the previous work.-
Keywords:
- non-Kolmogorov atmospheric turbulence /
- composite coherence vortex /
- partially coherent hyperbolic-sine-Gaussian vortex beam
[1] Gbur G, Visser T D, Wolf E 2001 Phys. Rev. Lett. 88 013901
[2] Ponomarenko S A 2001 J. Opt. Soc. Am. A 18 150
[3] Schouten H F, Gbur G, Visser T D,Wolf E 2003 Opt. Lett. 28 968
[4] Gbur G, Visser T D 2003 Opt. Commun. 222 117
[5] Gbur G, Visser T D, Wolf E 2004 J. Opt. A: Pure Appl. Opt. 6S239
[6] Fischer D G, Visser T D 2004 J. Opt. Soc. Am. A 21 2097
[7] Palacios D M, Maleev I D, Marathay A S, Swartzlander Jr G A2004 Phys. Rev. Lett. 92 143905
[8] Maleev I D, Palacios D M, Marathay A S, Swartzlander Jr G A2004 J. Opt. Soc. Am. B 21 1895
[9] Cheng K, Lü B 2008 J. Mod. Opt. 55 2751
[10] Li J, Lü B 2009 J. Opt. A 11 075401
[11] Stribling B E, Welsh B M, Roggemann M C 1995 Proc. SPIE2471 181
[12] Be1enkii M S, Karis S J, Brown II J M, Fugate R Q 2010 Proc.SPIE 3126 113
[13] Beland R R 2010 Proc. SPIE 2375 6
[14] Flossmann F, Schwarz U T, Maier M 2005 Opt. Commun. 250218
[15] Eyyuboglu H T, Baykal Y 2005 J. Opt. Soc. Am. A 22 2709
[16] Zahid M, Zubairy M S 1989 Opt. Commun 70 361
[17] Andrews L C, Phillips R L 1998 Laser Beam Propagation throughRandom Media (Bellingham: SPIE)
[18] Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[19] Toselli I, Andrews L C, Phillips R L, Ferreroa V 2007 Proc. SPIE6551 65510E-1
[20] Gradshteyn I S, Ryzhik I M 2007 Table of Integrals, Series andProducts (New York: Academic Press)
[21] Ji X, Zhang E, Lü B 2008 J. Opt. Soc. Am. B 25 825
[22] Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics(Cambridge, UK: Cambridge U. Press)
[23] Freund I, Shvartsman N 1994 Phys. Rev. A 50 5164
[24] Eyyboglu H T, Baykal Y 2005 Appl. Opt. 44 976
[25] Maleev I D, Swartzlander Jr G A 2003 J. Opt. Soc. Am. B 201169
[26] Gbur G, Tyson R K 2008 J. Opt. Soc. Am. A 25 225
[27] Lü H, Ke X Z 2009 Acta Opt. Sin. 29 331 (in Chinese) [吕宏, 柯熙政, 2009 光学学报 29 331]
[28] Liu Y D, Gao C Q, Gao W M, Li F 2007 Acta Phys. Sin. 56 854(in Chinese)[刘义东, 高春清, 高伟明, 李丰 2007 56 854]
[29] Wu J Z, Li Y J 2007 Chin. Phys. 16 1334
-
[1] Gbur G, Visser T D, Wolf E 2001 Phys. Rev. Lett. 88 013901
[2] Ponomarenko S A 2001 J. Opt. Soc. Am. A 18 150
[3] Schouten H F, Gbur G, Visser T D,Wolf E 2003 Opt. Lett. 28 968
[4] Gbur G, Visser T D 2003 Opt. Commun. 222 117
[5] Gbur G, Visser T D, Wolf E 2004 J. Opt. A: Pure Appl. Opt. 6S239
[6] Fischer D G, Visser T D 2004 J. Opt. Soc. Am. A 21 2097
[7] Palacios D M, Maleev I D, Marathay A S, Swartzlander Jr G A2004 Phys. Rev. Lett. 92 143905
[8] Maleev I D, Palacios D M, Marathay A S, Swartzlander Jr G A2004 J. Opt. Soc. Am. B 21 1895
[9] Cheng K, Lü B 2008 J. Mod. Opt. 55 2751
[10] Li J, Lü B 2009 J. Opt. A 11 075401
[11] Stribling B E, Welsh B M, Roggemann M C 1995 Proc. SPIE2471 181
[12] Be1enkii M S, Karis S J, Brown II J M, Fugate R Q 2010 Proc.SPIE 3126 113
[13] Beland R R 2010 Proc. SPIE 2375 6
[14] Flossmann F, Schwarz U T, Maier M 2005 Opt. Commun. 250218
[15] Eyyuboglu H T, Baykal Y 2005 J. Opt. Soc. Am. A 22 2709
[16] Zahid M, Zubairy M S 1989 Opt. Commun 70 361
[17] Andrews L C, Phillips R L 1998 Laser Beam Propagation throughRandom Media (Bellingham: SPIE)
[18] Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[19] Toselli I, Andrews L C, Phillips R L, Ferreroa V 2007 Proc. SPIE6551 65510E-1
[20] Gradshteyn I S, Ryzhik I M 2007 Table of Integrals, Series andProducts (New York: Academic Press)
[21] Ji X, Zhang E, Lü B 2008 J. Opt. Soc. Am. B 25 825
[22] Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics(Cambridge, UK: Cambridge U. Press)
[23] Freund I, Shvartsman N 1994 Phys. Rev. A 50 5164
[24] Eyyboglu H T, Baykal Y 2005 Appl. Opt. 44 976
[25] Maleev I D, Swartzlander Jr G A 2003 J. Opt. Soc. Am. B 201169
[26] Gbur G, Tyson R K 2008 J. Opt. Soc. Am. A 25 225
[27] Lü H, Ke X Z 2009 Acta Opt. Sin. 29 331 (in Chinese) [吕宏, 柯熙政, 2009 光学学报 29 331]
[28] Liu Y D, Gao C Q, Gao W M, Li F 2007 Acta Phys. Sin. 56 854(in Chinese)[刘义东, 高春清, 高伟明, 李丰 2007 56 854]
[29] Wu J Z, Li Y J 2007 Chin. Phys. 16 1334
计量
- 文章访问数: 6954
- PDF下载量: 655
- 被引次数: 0