搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多个子玻色-爱因斯坦凝聚气体膨胀叠加形成的量子涡旋现象研究

董毕远 徐志君

引用本文:
Citation:

多个子玻色-爱因斯坦凝聚气体膨胀叠加形成的量子涡旋现象研究

董毕远, 徐志君

Quantum vortex phenomenon of many sub-Bose-Einstein condensations formed by expansion and superposition

Dong Bi-Yuan, Xu Zhi-Jun
PDF
导出引用
  • 基于二维模型,研究了多个子玻色-爱因斯坦凝聚气体在谐振势阱内膨胀叠加形成的量子涡旋现象.运用传播子方法,分析了对称分布的三个子玻色-爱因斯坦凝聚气体膨胀叠加形成宏观量子涡旋的物理过程,得到量子涡旋随时间演化的规律;发现涡旋核分布在谐振势阱内出现振荡;涡旋与反涡旋随时间演化而相互转变,并对这些现象进行了物理分析.
    Based on the two-dimensional model, the formation mechanism of quantum vortex by the expansions and superpositions of the many sub-Bose-Einstein condensations (BECs) in the weak harmonic trap is studied. In the harmonic approximation, the initial wave function of the sub-BEC is Gaussian function. Once the initial wave function is known, by using the propagation method, the time evolution of the wave function for the sub-BECs could be obtained. The physical processes of the macroscopic quantum vortex formed by the symmetric distribution of the three sub-BEC expansions and superpositions are analyzed, and the law of quantum vortex with time evolution is obtained. It is found that the vortex distribution is oscillatory in the harmonic trap, and vortex and anti-vortex are mutually transformed in time. At the same time of evolution, the vortex direction is always opposite to that of the neighbor vortex, and at different evolutionary times t and t', which satisfy a relation of t+t'=T (period of harmonic trap), the position of vortex nucleus is unchanged, but the vortex is transformed into the anti-vortex. These basic phenomena of quantum vortex are explained and discussed. In particular, in this paper we also introduce the particle flow density, calculate the flow circulation of our system, and analyze the mechanism of vortex formation. The research ideas and methods in this paper are easily to be extended to the study about the vortex formed by more than three sub-BEC expansions and superpositions, and they can also be used to discuss the effects of sub-BECs with different initial phase differences. This model is also easier to implement in experiment. Therefore, the research of this paper also has enlightenment to the experimental work.
      通信作者: 徐志君, xzj@zjut.edu.cn
      Corresponding author: Xu Zhi-Jun, xzj@zjut.edu.cn
    [1]

    Davis K B, Mewes M, Anderson M R, Druten N J, Durfee D S 1995 Phys. Rev. Lett. 75 3969

    [2]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [3]

    Bradley C C, Sacket C A, Tollent J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [4]

    Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637

    [5]

    Burnett K 1998 Science 282 1657

    [6]

    Anderson B P, Kascvich M A 1998 Science 282 1686

    [7]

    Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E 1999 Phys. Rev. Lett. 83 2498

    [8]

    Xu Z J, Shi J Q, Lin G C 2007 Acta Phys. Sin. 56 666 (in Chinese) [徐志君, 施建青, 林国成 2007 56 666]

    [9]

    Bloch I 2005 Nature 434 23

    [10]

    Lundh E, Pethick C J, Smith H 1998 Phys. Rev.. 58 4816

    [11]

    Fölling S, Gerbier F, Widera A, Mandel O, Gericke T, Bloch I 2005 Nature 434 481

    [12]

    Cheng L C, Meng Z M, Wang P J 2017 Acta Phys. Sin. 66 083701 (in Chinese) [陈良超, 孟增明, 王鹏军 2017 66 083701]

    [13]

    Madison K W, Chevy F, Wohlleben W 2000 Phys. Rev. Lett. 84 806

    [14]

    Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403

    [15]

    Scherer D R, Weiler C N, Neely T W, Anderson B P 2007 Phys. Rev. Lett. 98 110402

    [16]

    Kläui M, Vaz C A F, Lopezdiaz L, Bland J A C 2003 J. Phys.: Condens. Matter 15 R985

    [17]

    Talos D M, Follett P L, Folkerth R D, Fishman R E, Trachtenberg F L 2007 New J. Phys. 9 95

    [18]

    Glover G M C, Fitzpatrick J J 2007 Chem. Eng. J. 127 11

    [19]

    Li Y Q, Li X G, Liu Z Y, Luo P Y, Zhang P M 2007 Acta Phys. Sin. 56 6178 (in Chinese) [李永青, 李希国, 刘紫玉, 罗培燕, 张鹏鸣 2007 56 6178]

    [20]

    Sakaguchi H, Li B, Malomed BA 2014 Phys. Rev.. 89 032920

    [21]

    Villaseñor B, Zamora-Zamora R, Bernal D, Romero-Rochín V 2013 Phys. Rev.. 89 1964

    [22]

    Wells T, Lode A U J, Bagnato V S, Tsatsos M C 2015 J. Low Temp. Phys. 80 1

    [23]

    Ruben G, Paganin D M 2007 Phys. Rev.. 75 066613

    [24]

    Scherer D R, Weiler C N, Neely T W, Anderson B P 2007 Phys. Rev. Lett. 98 110402

  • [1]

    Davis K B, Mewes M, Anderson M R, Druten N J, Durfee D S 1995 Phys. Rev. Lett. 75 3969

    [2]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [3]

    Bradley C C, Sacket C A, Tollent J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [4]

    Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637

    [5]

    Burnett K 1998 Science 282 1657

    [6]

    Anderson B P, Kascvich M A 1998 Science 282 1686

    [7]

    Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E 1999 Phys. Rev. Lett. 83 2498

    [8]

    Xu Z J, Shi J Q, Lin G C 2007 Acta Phys. Sin. 56 666 (in Chinese) [徐志君, 施建青, 林国成 2007 56 666]

    [9]

    Bloch I 2005 Nature 434 23

    [10]

    Lundh E, Pethick C J, Smith H 1998 Phys. Rev.. 58 4816

    [11]

    Fölling S, Gerbier F, Widera A, Mandel O, Gericke T, Bloch I 2005 Nature 434 481

    [12]

    Cheng L C, Meng Z M, Wang P J 2017 Acta Phys. Sin. 66 083701 (in Chinese) [陈良超, 孟增明, 王鹏军 2017 66 083701]

    [13]

    Madison K W, Chevy F, Wohlleben W 2000 Phys. Rev. Lett. 84 806

    [14]

    Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403

    [15]

    Scherer D R, Weiler C N, Neely T W, Anderson B P 2007 Phys. Rev. Lett. 98 110402

    [16]

    Kläui M, Vaz C A F, Lopezdiaz L, Bland J A C 2003 J. Phys.: Condens. Matter 15 R985

    [17]

    Talos D M, Follett P L, Folkerth R D, Fishman R E, Trachtenberg F L 2007 New J. Phys. 9 95

    [18]

    Glover G M C, Fitzpatrick J J 2007 Chem. Eng. J. 127 11

    [19]

    Li Y Q, Li X G, Liu Z Y, Luo P Y, Zhang P M 2007 Acta Phys. Sin. 56 6178 (in Chinese) [李永青, 李希国, 刘紫玉, 罗培燕, 张鹏鸣 2007 56 6178]

    [20]

    Sakaguchi H, Li B, Malomed BA 2014 Phys. Rev.. 89 032920

    [21]

    Villaseñor B, Zamora-Zamora R, Bernal D, Romero-Rochín V 2013 Phys. Rev.. 89 1964

    [22]

    Wells T, Lode A U J, Bagnato V S, Tsatsos M C 2015 J. Low Temp. Phys. 80 1

    [23]

    Ruben G, Paganin D M 2007 Phys. Rev.. 75 066613

    [24]

    Scherer D R, Weiler C N, Neely T W, Anderson B P 2007 Phys. Rev. Lett. 98 110402

  • [1] 李群, 陈谦, 种景. InAlN/GaN异质结二维电子气波函数的变分法研究.  , 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [2] 赵文静, 文灵华. 半无限深势阱中自旋相关玻色-爱因斯坦凝聚体的量子反射与干涉.  , 2017, 66(23): 230301. doi: 10.7498/aps.66.230301
    [3] 周洁, 杨双波. 周期受击陀螺系统随时间演化波函数的多重分形.  , 2015, 64(20): 200505. doi: 10.7498/aps.64.200505
    [4] 周洁, 杨双波. 周期受击陀螺系统波函数的分形.  , 2014, 63(22): 220507. doi: 10.7498/aps.63.220507
    [5] 李名锐, 周刚, 初哲, 戴湘晖, 吴海军, 范如玉. 共振价键波函数在高压液氢量子蒙卡模拟中的适用性研究.  , 2013, 62(15): 156101. doi: 10.7498/aps.62.156101
    [6] 冉诗勇. 谐振势阱中的布朗运动——磁镊实验与模拟.  , 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [7] 熊涛, 张杰, 陈祥磊, 叶邦角, 杜淮江, 翁惠民. 单晶固体中正电子波函数的计算.  , 2010, 59(10): 7374-7377. doi: 10.7498/aps.59.7374
    [8] 徐志君, 聂青苗, 李鹏华. 用遗传算法研究一维光晶格中玻色凝聚气体基态波函数.  , 2009, 58(5): 2878-2883. doi: 10.7498/aps.58.2878
    [9] 徐志君, 李鹏华. 玻色凝聚原子云的二次干涉及其放大效应.  , 2007, 56(10): 5607-5612. doi: 10.7498/aps.56.5607
    [10] 徐志君, 王冬梅, 李 珍. 一维光晶格中玻色凝聚气体的干涉.  , 2007, 56(6): 3076-3082. doi: 10.7498/aps.56.3076
    [11] 徐志君, 施建青, 林国成. 轴对称谐振势阱中玻色凝聚气体基态和单涡旋态解.  , 2007, 56(2): 666-672. doi: 10.7498/aps.56.666
    [12] 徐志君, 施建青, 李 珍, 蔡萍根. 基于Gross-Pitaevskii能量泛函求解谐振势阱中玻色凝聚气体基态波函数.  , 2006, 55(7): 3265-3271. doi: 10.7498/aps.55.3265
    [13] 王忠纯, 王 琪, 顾永建, 郭光灿. 经典外场驱动下Tavis-Cummings系统的能量本征值和波函数.  , 2005, 54(1): 107-112. doi: 10.7498/aps.54.107
    [14] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构.  , 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [15] 龙姝明, 冉启武, 熊晓军. 基态球谐振子的空间“塌陷”.  , 2005, 54(3): 1044-1047. doi: 10.7498/aps.54.1044
    [16] 李兴华, 杨亚天. 氢原子波函数的玻色算子表示.  , 2005, 54(1): 12-17. doi: 10.7498/aps.54.12
    [17] 王翀, 闫珂柱. 简谐势阱中非理想气体玻色-爱因斯坦凝聚转变温度的数值研究.  , 2004, 53(5): 1284-1288. doi: 10.7498/aps.53.1284
    [18] 戴宏毅, 陈平形, 梁林梅, 李承祖. 利用Λ型原子与光场的纠缠态传送腔场的奇偶相干态的叠加态.  , 2004, 53(2): 441-444. doi: 10.7498/aps.53.441
    [19] 徐志君, 程 成, 杨欢耸, 武 强, 熊宏伟. 三维光晶格中玻色凝聚气体基态波函数及干涉演化.  , 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
    [20] 张鹏, 王如竹, 村上正秀. 超流氦浴中的热波传热研究.  , 2002, 51(6): 1350-1354. doi: 10.7498/aps.51.1350
计量
  • 文章访问数:  6719
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-25
  • 修回日期:  2017-09-29
  • 刊出日期:  2018-01-05

/

返回文章
返回
Baidu
map