搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响

赵崇霄 漆亮文 闫慧杰 王婷婷 任春生

引用本文:
Citation:

放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响

赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生

Influence of discharge parameters on pulsed discharge of coaxial gun in deflagration mode

Zhao Chong-Xiao, Qi Liang-Wen, Yan Hui-Jie, Wang Ting-Ting, Ren Chun-Sheng
PDF
HTML
导出引用
  • 同轴枪强流脉冲放电常见有爆燃模式和预填充模式两种放电模式, 爆燃模式放电可以得到杂质少、准直性高、输运速度更快的等离子体射流. 本实验主要对不同电压及进气量下同轴枪强流脉冲爆燃模式放电的等离子体特性进行了研究. 结果表明, 在相同放电电压下, 进气量少时会有多团等离子体从枪口喷出. 随着进气量的增加, 同轴枪放电产生的等离子体密度增加, 输运速度减小, 最终等离子体只有一团从枪口喷出; 而在相同进气量下, 随着电压的增加, 等离子体密度增加, 输运速度增大, 开始出现有多团等离子体从枪口喷出的现象. 产生该现象的原因主要是在放电过程中, 当气体持续进入枪底部时, 同轴枪底部会产生新的电流通道向前运动, 使得在同轴枪出口处观察到了多团等离子体喷出的现象; 随着放电电压的增加, 在放电过程中回路电流也增加. 当电流增加到一定程度时, 同轴枪底部就会产生新的电流通道, 从而有多个等离子体团从枪口喷出. 通过改变充电电容以及对磁探针信号的分析, 进一步分析并验证了同轴枪底端多次放电的现象.
    Coaxial gun can produce high-speed and high-density plasma jet and has some potential applications in many research areas such as space thruster, space debris impact simulation, nuclear fusion, and material processing. The coaxial gun is usually composed of a pair of coaxial cylindrical and hollow electrodes. The pulsed discharge of coaxial gun has two discharge modes, i.e., deflagration mode and pre-fill mode. Compared with the pre-fill mode, deflagration discharge mode can induce a plasma jet with few impurities, high collimation, and fast speed. In this paper, the effect of gas injection mass and discharge voltage on the discharge characteristic of deflagration mode are studied with electrical and optical diagnosis including the emission spectrum, plasma velocity and discharge current measurements. The experimental results show that when the gas injection mass is relatively low, such as 1.4 mg, many plasma clusters eject from the muzzle. As the gas flowing into the coaxial gun bottom increases, the plasma density increases and the jet velocity decreases. Eventually, when the gas injection mass increases to 2.6 mg, one cluster of plasma is found and ejects from the muzzle of the gun. In the discharge process, as a small quantity of gas flows into the bottom of the coaxial gun through the electromagnetic valve continuously, new current paths will be generated at the bottom of the coaxial gun and move forward. This results in the observation of multiple plasma jet at the exit of the coaxial gun. It is noted that the plasma densities are different for different gas mass flowing into coaxial gun bottom, but the currents have little effect in the first discharge half cycle due to the small plasma inductance in discharge circuit. Meanwhile, the plasma characteristics under different voltages with the fixed gas mass of 2.6 mg flowing into the coaxial gun bottom are experimentally measured. The results show that the plasma density and speed increase with voltage increasing, which is attributed to the stronger discharge current and larger self-induced Lorentz force. More neutral particles can be ionized into plasma with discharge voltage increasing, and the transport speed becomes faster under the enhanced force. In addition, the multiple ionization phenomena are observed again when the discharge voltage increases from 5 kV to 8 kV. This study provides an insight into how to better apply the coaxial gun discharge plasma to practical engineering field. The article further verifies the phenomenon of multiple discharges at the bottom of the coaxial gun by changing the charging capacitance and analyzing the magnetic probe signals.
      通信作者: 任春生, rchsh@dlut.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFE0301206)、国家自然科学基金(批准号:51807020)和中央高校基本科研业务费(批准号:DUT18RC(3)019)资助的课题.
      Corresponding author: Ren Chun-Sheng, rchsh@dlut.edu.cn
    • Funds: Project supported by National Key R&D Program of China (Grant No. 2017YFE0301206), the National Natural Science Foundation of China (Grant No. 51807020), and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT18RC(3)019).
    [1]

    Marshall J 1960 Phys. Fluids 3 134

    [2]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [3]

    杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生 2014 高电压技术 40 2113

    Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014 High Voltage Engineering 40 2113

    [4]

    Witherspoon F D, Case A, Messer S J, B R, Phillips M W, Brockington S, Elton R 2009 Rev. Sci. Instrum. 80 363

    [5]

    Bhuyan H, Mohanty S R, Neog N K, Bujarbarua S, Rout R K 2003 Meas. Sci. Technol. 14 1769Google Scholar

    [6]

    Mather J W 1965 Phys. Fluids 8 366Google Scholar

    [7]

    Mather J W 1963 Phys. Fluids 7 S28

    [8]

    Cheng D Y 1971 AIAA J. 9 1681Google Scholar

    [9]

    李宏伟, 韩建伟, 吴逢时, 蔡明辉, 张振龙 2014 63 119601Google Scholar

    Li H W, Han J W, Wu F S, Cai M H, Zhang Z L 2014 Acta Phys. Sin. 63 119601Google Scholar

    [10]

    李宏伟, 韩建伟, 蔡明辉, 吴逢时 2013 62 229601Google Scholar

    Li H W, Han J W, Cai M H, Wu F S 2013 Acta Phys. Sin. 62 229601Google Scholar

    [11]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [12]

    Turchi P J, Roderick N F, Degnan J H, Frese M H, Amdahl D J 2008 IEEE Trans. Plasmas Sci. 36 92Google Scholar

    [13]

    Schoenberg K F, Gerwin R A, Moses Jr R W, Scheuer J T, Wagner H P 1998 Phys. Plasmas 5 2090Google Scholar

    [14]

    Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar

    [15]

    Poehlmann F R 2010 Ph. D Dissertation (Stamford: Stanford University)

    [16]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [17]

    Rabiński M, Zdunek K 2003 Vacuum 70 303Google Scholar

    [18]

    Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar

    [19]

    Loebner K T K, Wang B C, Poehlmann F R, Watanabe Y, Cappelli M A 2014 IEEE Trans. Plasmas Sci. 42 2500Google Scholar

    [20]

    Poehlmann F R, Cappelli M A, Rieker G B 2010 Phys. Plasmas 17 333

    [21]

    Rieker G B, Poehlmann F R, Cappelli M A 2013 Phys. Plasmas 20 07311

    [22]

    Subramaniam V, Underwood T C, Raja L L, Cappelli M A 2018 Plasma. Sources Sci. T. 27 025016Google Scholar

    [23]

    Ashkenazy J, Kipper R, Caner M 1991 Physical Rev. A 43 568Google Scholar

    [24]

    Wiechula J, Hock C, Iberler M, Manegold T, Schonlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

  • 图 1  实验装置原理图

    Fig. 1.  Schematic diagram of experimental equipment

    图 2  (a)—(d)分别为电压为5 kV, 进气量为1.4, 2.1, 2.3, 2.6 mg的电流信号与光电流信号

    Fig. 2.  Current and photocurrent signals for 5 kV voltage at gas in the coaxial gun bottom of (a) 1.4 mg, (b) 2.1 mg, (c) 2.3 mg and (d) 2.6 mg, respectively

    图 3  电压5 kV时等离子体输运速度随着进气量的变化

    Fig. 3.  The velocity versus with the gas which enters in the coaxial gun bottom with the discharge voltage 5 kV

    图 4  放电电压5 kV、进气量1.4 mg、光谱仪曝光时间3 s光栅设置为1200 g/mm时的Hβ谱线

    Fig. 4.  The Hβ line of the discharge voltage 5 kV, the gas which enters in the coaxial gun bottom 1.4 mg, the exposure time of the spectrometer 3 s, and the grating set at 1200 g/mm

    图 5  进气量1.4 mg、放电电压5 kV时, Hβ谱线及其拟合曲线, 展宽为0.089 nm

    Fig. 5.  Hβ spectrum and its Lorenz fitting line, spectrum broadening is 0.089 nm

    图 6  使用氦氖激光器测量得到的仪器展宽, 得到的展宽为0.036 nm

    Fig. 6.  Instrument broadening measured using helium laser, spectrum broadening is 0.036 nm

    图 7  放电电压5 kV时电子密度随进气量变化

    Fig. 7.  Electron density versus the gas with the discharge voltage of 5 kV

    图 8  放电电压5 kV进气量分别为1.4 mg和2.6 mg条件下的电流信号和磁信号

    Fig. 8.  The current signal and magnetic signal for for 5 kV voltage at gas in the coaxial gun bottom of (a) 1.4 mg and (d) 2.6 mg, respectively

    图 9  (a)—(d)分别为进气量2.6 mg, 电压为5, 6, 7, 8 kV的电流信号与光电流信号

    Fig. 9.  Current and photocurrent signals for 2.6 mg gas in the coaxial gun bottom at voltages of (a) 5 kV, (b) 6 kV, (c) 7 kV and (d) 8 kV, respectively

    图 10  进气量2.6 mg速度随着电压的变化

    Fig. 10.  The velocity versus discharge voltage with the gas which enters in the coaxial gun bottom of 2.6 mg

    图 11  进气量2.6 mg时电子密度随着电压的变化

    Fig. 11.  The electron density versus discharge voltage with the gas which enters in the coaxial gun bottom of 2.6 mg

    图 12  数码相机拍摄的同轴枪放电图片, (a), (b)分别为进气量5.5 mg, 电压为5 kV和8 kV时的图片

    Fig. 12.  The coaxial gun discharge pictures taken by the digital camera, the exposure time is 1 s, with the gases which enter in the coaxial gun bottom of 5.5 mg and the discharge voltage of (a) 5 kV and (b) 8 kV respectively

    图 13  (a), (b)分别为放电电压5 kV、送气量1.4 mg、电容分别为180 μF和120 μF的电流信号和光电流信号

    Fig. 13.  Current signals and photocurrent signals for a discharge voltage of 5 kV, 1.4 mg gas in the coaxial gun bottom, and capacitances of (a) 180 μF and (b) 120 μF, respectively

    图 14  (a), (b)分别为电流幅值52 kA、送气量1.4 mg、电容分别为180 μF和120 μF的电流信号和光电流信号

    Fig. 14.  Current signal and photocurrent signal for current amplitude of 52 kA, 1.4 mg gas in the coaxial gun bottom, and capacitance of (a) 180 μF and (b) 120 μF, respectively

    Baidu
  • [1]

    Marshall J 1960 Phys. Fluids 3 134

    [2]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [3]

    杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生 2014 高电压技术 40 2113

    Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014 High Voltage Engineering 40 2113

    [4]

    Witherspoon F D, Case A, Messer S J, B R, Phillips M W, Brockington S, Elton R 2009 Rev. Sci. Instrum. 80 363

    [5]

    Bhuyan H, Mohanty S R, Neog N K, Bujarbarua S, Rout R K 2003 Meas. Sci. Technol. 14 1769Google Scholar

    [6]

    Mather J W 1965 Phys. Fluids 8 366Google Scholar

    [7]

    Mather J W 1963 Phys. Fluids 7 S28

    [8]

    Cheng D Y 1971 AIAA J. 9 1681Google Scholar

    [9]

    李宏伟, 韩建伟, 吴逢时, 蔡明辉, 张振龙 2014 63 119601Google Scholar

    Li H W, Han J W, Wu F S, Cai M H, Zhang Z L 2014 Acta Phys. Sin. 63 119601Google Scholar

    [10]

    李宏伟, 韩建伟, 蔡明辉, 吴逢时 2013 62 229601Google Scholar

    Li H W, Han J W, Cai M H, Wu F S 2013 Acta Phys. Sin. 62 229601Google Scholar

    [11]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [12]

    Turchi P J, Roderick N F, Degnan J H, Frese M H, Amdahl D J 2008 IEEE Trans. Plasmas Sci. 36 92Google Scholar

    [13]

    Schoenberg K F, Gerwin R A, Moses Jr R W, Scheuer J T, Wagner H P 1998 Phys. Plasmas 5 2090Google Scholar

    [14]

    Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar

    [15]

    Poehlmann F R 2010 Ph. D Dissertation (Stamford: Stanford University)

    [16]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [17]

    Rabiński M, Zdunek K 2003 Vacuum 70 303Google Scholar

    [18]

    Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar

    [19]

    Loebner K T K, Wang B C, Poehlmann F R, Watanabe Y, Cappelli M A 2014 IEEE Trans. Plasmas Sci. 42 2500Google Scholar

    [20]

    Poehlmann F R, Cappelli M A, Rieker G B 2010 Phys. Plasmas 17 333

    [21]

    Rieker G B, Poehlmann F R, Cappelli M A 2013 Phys. Plasmas 20 07311

    [22]

    Subramaniam V, Underwood T C, Raja L L, Cappelli M A 2018 Plasma. Sources Sci. T. 27 025016Google Scholar

    [23]

    Ashkenazy J, Kipper R, Caner M 1991 Physical Rev. A 43 568Google Scholar

    [24]

    Wiechula J, Hock C, Iberler M, Manegold T, Schonlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

  • [1] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性.  , 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] 张津硕, 孙辉, 杜志杰, 张雪航, 肖青梅, 范金蕤, 闫慧杰, 宋健. 预填充模式下同轴枪放电等离子体加速模型分析与优化.  , 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [3] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照. 微波谐振腔低气压放电等离子体反应动力学过程.  , 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [4] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响.  , 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [5] 宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真. 外电极长度对同轴枪放电等离子体特性的影响.  , 2021, 70(10): 105201. doi: 10.7498/aps.70.20201724
    [6] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比.  , 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [7] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生. 同轴枪放电等离子体电流片的运动特性研究.  , 2019, 68(3): 035203. doi: 10.7498/aps.68.20181832
    [8] 邹丹旦, 蔡智超, 吴鹏, 李春华, 曾晗, 张红丽, 崔春梅. 脉冲放电产生螺旋流注的等离子体特性研究.  , 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [9] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟.  , 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [10] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生. 同轴枪脉冲放电等离子体输运过程中密度变化的实验研究.  , 2017, 66(5): 055203. doi: 10.7498/aps.66.055203
    [11] 张鑫, 黄勇, 王万波, 唐坤, 李华星. 对称式布局介质阻挡放电等离子体激励器诱导启动涡.  , 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [12] 王建龙, 丁芳, 朱晓东. 高气压均匀直流辉光放电等离子体的光学特性.  , 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [13] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响.  , 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [14] 冯璟华, 蒙世坚, 甫跃成, 周林, 徐荣昆, 张建华, 李林波, 章法强. 含氢电极真空弧放电等离子体时空分布特性研究.  , 2014, 63(14): 145205. doi: 10.7498/aps.63.145205
    [15] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究.  , 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [16] 杜宏亮, 何立明, 兰宇丹, 王峰. 约化场强对氮-氧混合气放电等离子体演化特性的影响.  , 2011, 60(11): 115201. doi: 10.7498/aps.60.115201
    [17] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究.  , 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [18] 李 钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张 翼, 李汉明. 平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用.  , 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [19] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究.  , 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [20] 卢新培, 潘垣, 张寒虹. 水中脉冲放电等离子体通道特性及气泡破裂过程.  , 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
计量
  • 文章访问数:  7136
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-19
  • 修回日期:  2019-03-28
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map