-
三元黄铜矿结构(也称类金刚石结构)半导体是一类具有热电转换潜力的新型热电材料. 本次工作中采用电负性更小的Mn元素替换CuInTe2黄铜矿结构半导体中的Cu元素, 设计制备贫Cu化合物Cu1-xInMnxTe2. 研究表明, 当Mn含量较低时, Mn优先占位在In 位置产生受主缺陷MnIn-. 因此随着Mn含量的增大, 载流子浓度和电导率均得到改善. 但当Mn含量进一步增大后, Mn可同时占位在In位置和Cu位置, 除产生受主缺陷MnIn-外, 还能产生施主缺陷MnCu+. 由于两类极性相反的缺陷之间的湮灭现象, 使得缺陷浓度及载流子浓度开始降低, 晶格结构畸变有变小趋势, 因此在高温下晶格热导率仅略有提高. 研究结果表明, 在某一特定的Mn含量(x=0.05)时, 材料具有最优的热电性能(ZT=0.84@810.0 K), 这一性能约是未掺杂CuInTe2的2倍.
-
关键词:
- 热电材料 /
- 三元黄铜矿结构半导体 /
- CuInTe2 /
- 缺陷特征
In thermoelectric (TE) semiconductors, there are three physical parameters that govern the TE performance (i.e. Seebeck coefficient (), electrical conductivity (), and thermal conductivity ()); they are interrelated, hence it is hard to optimize them simultaneously. In order to improve the TE performance, we need to further explore new materials. Ternary chalcopyrite (diamond-like) I-III-VI2 semiconductors (Eg = 1:02 eV) are new materials of the TE family, which have potential in conversion between heat and electricity. Since in the ternary chalcopyrite structure, such as Cu(Ag) MTe2, there is an inherent Coulomb attraction between charged defects MCu(Ag)2+ and 2VCu(Ag)- (a native defect pair, i.e., metal M-on-Cu or Ag antisites and two Cu or Ag vacancies), hence the electronic and structural properties can easily be tailored if these two defects, along with the creation of other defects, are modified through the introduciton of foreign elements. Besides, the ternary I-III-VI2 compounds often show tetragonal distortion because 0.25, = c/2a 1 (here and are the anion position displacement parameters, and a and c are the lattice parameters), and the cationanion distances are not equal (dCuTedInTe). Any occupation by foreign elements in the cation sites of I-III-VI2 will cause the redistribution of bond charges between I-VI and III-VI, thus leading to a tiny adjustment of the crystal structure and altering the phonon scattering behavior. In this work, we substitute Mn for Cu in the chalcopyrite CuInTe2 and prepare the Cu-poor Cu1-xInMnxTe2 semiconductors. Investigations of Z-ray patterns after Rietveld refinement reveal that Mn prefers In to Cu lattice sites for low Mn content (x 0.1), thus creating MnIn- as an active acceptor, and improving the carrier concentration (n) and electrical conductivity as Mn content increases. However, Mn can either occupy In or Cu sites simultaneously when x 0.1, and generate both the donor defect MnCu+ and the acceptor defect MnIn-. In this case, annihilation may occur between these two defects, allowing the reduction in both the defect and carrier concentrations. Because of the annihilation between the two defects, two values (|| = |-0.25| and ||= |-1.0|) reduce, this only yields a subtle change in the difference between mean cation-anion distance (RInTe-RCuTe), indicating a small distortion tendency in lattice structure as Mn content increases. Because of this, there is a limited enhancement in lattice thermal conductivity (L) at high temperatures. As a consequence, we attain an optimal TE performance at a certain Mn content (x = 0.05) with the dimensionless figure of merit (ZT) ZT = 0.84 at 810.0 K, which is about twice as much as that of Mn-free CuInTe2.-
Keywords:
- thermoelectric performance /
- ternary chalcopyrite semiconductors /
- CuInTe2 /
- defects
[1] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818
[2] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
[3] Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66
[4] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q, Uher C 2012 Phys. Rev. Lett. 108 166601
[5] Biswas K, He J, Blum I D, Wu C, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414
[6] Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727
[7] Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinses) [陈晓彬, 段文晖 2015 64 186302]
[8] Wu H N, Sun X, Gong W J, Yi G Y 2015 Acta Phys. Sin. 64 077301 (in Chinese) [吴海娜, 孙雪, 公卫江, 易光宇 2015 64 077301]
[9] Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 60 027202]
[10] Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201 (in Chinese) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 61 047201]
[11] Wang S X, Zhang X 2015 J. Thermal Sci. Techno. 14 119 (in Chinses) [王世学, 张星 2015 热科学与技术 14 119]
[12] Walia S, Weber R, Balendhran S, Yao D, Abrahamson J T, Zhuiykov S, Bhaskaran M, Sriram S, Strano M S, Kalantar-Zadeh K 2012 Chem. Commun. 48 7462
[13] Walia S, Balendhran S, Yi P, Yao D, Zhuiykov S, Pannirselvam M, Weber R, Strano M S, Bhaskaran M, Sriram S, Kalantar-Zadeh K 2013 J. Phys. Chem.C 117 9137
[14] Walia S, Weber R, Sriram S, Bhaskaran M, Latham K, Zhuiykov S, Kalantar-Zadeh K 2011 Energy Environ. Sci. 4 3558
[15] Walia S, Weber R, Latham K, Petersen P, Abrahamson J T, Strano M S, Kalantar-Zadeh K 2011 Adv. Func. Mater. 21 2072
[16] Shimizu S, Choi W, Abrahamson J T, Strano M S 2011 Phys. Sta. Sol. 248 2445
[17] Lee K Y, Hwang H, Choi W 2014 ACS Appl.Mater. Interfaces 6 15575
[18] Abrahamson J T, Sempere B, Walsh M P, Forman J M, Sen F, Sen S, Mahajan S G, Paulus G L, Wang Q H, Choi W, Strano M S 2013 ACS Nano 7 6533
[19] Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2012 Adv. Mater. 24 3622
[20] Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem.Commun. 48 3818
[21] Fan F, Wu L, Yu S 2014 Energ. Environ. Sci. 7 190
[22] Zhang J, Liu R, Cheng N, Zhang Y, Yang J, Uher C, Shi X, Chen L, Zhang W 2014 Adv. Mater. 26 3848
[23] Wang L, Ying P, Deng Y, Zhou H, Du Z, Cui J 2014 RSC Adv. 4 33897
[24] Zhang S B, Wei S H, Zunger A 1998 Phys. Rev. B 57 9642
[25] Zhang S B, Wei S H, Zunger A 1997 Phys. Rev. Lett. 78 4059
[26] Rincn C, Wasim S M, Marn G 2002 Appl. Phys. Lett. 80 998
[27] Yang J, Chen S, Du Z, Liu X, Cui J 2014 Dalton Trans. 43 15228
[28] Yuan Z K, Peng X, Chen S Y 2015 Acta Phys. Sin. 64 186102 (in Chinese) (袁振坤, 许鹏, 陈时友 2015 64 186102]
[29] Lee J H, Wu J Q, Grossman J C 2010 Phys. Rev. Lett. 104 016602
[30] Roussak L, Wagner G, Schorr S, Bente K 2005 J. Solid State Chem. 178 3476
[31] Liu X, Zhu T, Wang H, Hu L, Xie H, Jiang G, Snyder J G, Zhao X B 2013 Adv. Energy Mater. 3 1238
[32] Moulder J F, Chastain J Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota, 1992) p261
[33] Yao J, Takas N J, Schliefert M L, Paprocki D S, Blanchard P E R, Gou H, Mar A, Exstrom C L, Darveau S A, Poudeu P F, Aitken J A 2011 Phys. Rev. B 84 075203
[34] Heo N H, Park J S, Kim Y J, Lim W T, Jung S W, Seff K 2003 J. Phys. Chem. B 107 1120
[35] Zhou H, Park J 2015 Phys. Sta. Sol. (a) 212 414
[36] Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J, Cui J 2012 Appl. Phys. Lett. 100 231903
[37] Abrahams S C, Bernstein J L 1973 J. Chem. Phys. 59 5415
[38] Abrahams S C, Bernstein J L 1974 J. Chem. Phys 61 1140
[39] Jaffe J E, Zunger A 1984 Phys Rev. B 29 1882
[40] Luo Y, Yang J, Li G, Liu M, Xiao Y, Fu L, Li W, Zhu P, Peng J, Gao S, Zhang J 2014 Adv. Energy Mater. 4 1300599
[41] Liu M, Qin X Y 2012 Appl. Phys. Lett. 101 132103
[42] Liu M, Qin X Y, Liu C S, Zeng Z 2011 Appl. Phys. Lett. 99 062112
[43] Lv H Y, Liu H J, Tan X J, Pan L, Wen Y W, Shi J, Tang X F 2012 Nanoscale 4 511
[44] He J, Girard S N, Kanatzidis M G, Dravid V P 2010 Adv. Funct. Mater. 20 764
-
[1] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818
[2] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
[3] Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66
[4] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q, Uher C 2012 Phys. Rev. Lett. 108 166601
[5] Biswas K, He J, Blum I D, Wu C, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414
[6] Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727
[7] Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinses) [陈晓彬, 段文晖 2015 64 186302]
[8] Wu H N, Sun X, Gong W J, Yi G Y 2015 Acta Phys. Sin. 64 077301 (in Chinese) [吴海娜, 孙雪, 公卫江, 易光宇 2015 64 077301]
[9] Wang Z C, Li H, Su X L, Tang X F 2011 Acta Phys. Sin. 60 027202 (in Chinese) [王作成, 李涵, 苏贤礼, 唐新峰 2011 60 027202]
[10] Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201 (in Chinese) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 61 047201]
[11] Wang S X, Zhang X 2015 J. Thermal Sci. Techno. 14 119 (in Chinses) [王世学, 张星 2015 热科学与技术 14 119]
[12] Walia S, Weber R, Balendhran S, Yao D, Abrahamson J T, Zhuiykov S, Bhaskaran M, Sriram S, Strano M S, Kalantar-Zadeh K 2012 Chem. Commun. 48 7462
[13] Walia S, Balendhran S, Yi P, Yao D, Zhuiykov S, Pannirselvam M, Weber R, Strano M S, Bhaskaran M, Sriram S, Kalantar-Zadeh K 2013 J. Phys. Chem.C 117 9137
[14] Walia S, Weber R, Sriram S, Bhaskaran M, Latham K, Zhuiykov S, Kalantar-Zadeh K 2011 Energy Environ. Sci. 4 3558
[15] Walia S, Weber R, Latham K, Petersen P, Abrahamson J T, Strano M S, Kalantar-Zadeh K 2011 Adv. Func. Mater. 21 2072
[16] Shimizu S, Choi W, Abrahamson J T, Strano M S 2011 Phys. Sta. Sol. 248 2445
[17] Lee K Y, Hwang H, Choi W 2014 ACS Appl.Mater. Interfaces 6 15575
[18] Abrahamson J T, Sempere B, Walsh M P, Forman J M, Sen F, Sen S, Mahajan S G, Paulus G L, Wang Q H, Choi W, Strano M S 2013 ACS Nano 7 6533
[19] Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2012 Adv. Mater. 24 3622
[20] Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem.Commun. 48 3818
[21] Fan F, Wu L, Yu S 2014 Energ. Environ. Sci. 7 190
[22] Zhang J, Liu R, Cheng N, Zhang Y, Yang J, Uher C, Shi X, Chen L, Zhang W 2014 Adv. Mater. 26 3848
[23] Wang L, Ying P, Deng Y, Zhou H, Du Z, Cui J 2014 RSC Adv. 4 33897
[24] Zhang S B, Wei S H, Zunger A 1998 Phys. Rev. B 57 9642
[25] Zhang S B, Wei S H, Zunger A 1997 Phys. Rev. Lett. 78 4059
[26] Rincn C, Wasim S M, Marn G 2002 Appl. Phys. Lett. 80 998
[27] Yang J, Chen S, Du Z, Liu X, Cui J 2014 Dalton Trans. 43 15228
[28] Yuan Z K, Peng X, Chen S Y 2015 Acta Phys. Sin. 64 186102 (in Chinese) (袁振坤, 许鹏, 陈时友 2015 64 186102]
[29] Lee J H, Wu J Q, Grossman J C 2010 Phys. Rev. Lett. 104 016602
[30] Roussak L, Wagner G, Schorr S, Bente K 2005 J. Solid State Chem. 178 3476
[31] Liu X, Zhu T, Wang H, Hu L, Xie H, Jiang G, Snyder J G, Zhao X B 2013 Adv. Energy Mater. 3 1238
[32] Moulder J F, Chastain J Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota, 1992) p261
[33] Yao J, Takas N J, Schliefert M L, Paprocki D S, Blanchard P E R, Gou H, Mar A, Exstrom C L, Darveau S A, Poudeu P F, Aitken J A 2011 Phys. Rev. B 84 075203
[34] Heo N H, Park J S, Kim Y J, Lim W T, Jung S W, Seff K 2003 J. Phys. Chem. B 107 1120
[35] Zhou H, Park J 2015 Phys. Sta. Sol. (a) 212 414
[36] Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J, Cui J 2012 Appl. Phys. Lett. 100 231903
[37] Abrahams S C, Bernstein J L 1973 J. Chem. Phys. 59 5415
[38] Abrahams S C, Bernstein J L 1974 J. Chem. Phys 61 1140
[39] Jaffe J E, Zunger A 1984 Phys Rev. B 29 1882
[40] Luo Y, Yang J, Li G, Liu M, Xiao Y, Fu L, Li W, Zhu P, Peng J, Gao S, Zhang J 2014 Adv. Energy Mater. 4 1300599
[41] Liu M, Qin X Y 2012 Appl. Phys. Lett. 101 132103
[42] Liu M, Qin X Y, Liu C S, Zeng Z 2011 Appl. Phys. Lett. 99 062112
[43] Lv H Y, Liu H J, Tan X J, Pan L, Wen Y W, Shi J, Tang X F 2012 Nanoscale 4 511
[44] He J, Girard S N, Kanatzidis M G, Dravid V P 2010 Adv. Funct. Mater. 20 764
计量
- 文章访问数: 7634
- PDF下载量: 234
- 被引次数: 0